• Title/Summary/Keyword: 보강 섬유

Search Result 1,623, Processing Time 0.033 seconds

Mechanical Properties of Cement Mortar with Fibers (섬유보강 시멘트 모르타르의 기계적 특성)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.491-498
    • /
    • 1994
  • A fiber reinforced grouts were made using ordinary cement mortar and high effective water reducing agent (naphthalene sulfonate) were made by addition polypropylene fiber and carbon fiber. The physical properties of the grouts were investigated through the observation of the microstructure and the application of fracture mechanics. When the polypropylene fiber and carbon fiber were added respectively with 0.03 wt% to the grouts the compressive strength, flexural strength and Young's modulus were about 60∼63 MPa, 12.2∼12.4 MPa, 4.2∼4.8 GPa and 63∼68 MPa, 12.2∼12.6 MPa, 4.8∼5.1 GPa, and critical stress intensity were about 0.77∼0.82 MNm-1.5, and 0.80∼0.87 MNm-1.5 respectively, It can be considered that the strength improvement of fiber reinforced grouts (FRG) may be due to the removal of macropores and the increase of various fracture toughness, polymer fibril bridging and fiber bridging.

  • PDF

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Effects of Various Stress Histories Including Creep Loading on Strength of a Geogrid (크리프 하중을 포함한 응력이력이 지오그리드 강도에 미치는 영향)

  • Park, Young-Kon;Fumio Tatsuoka
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.441-444
    • /
    • 2001
  • PVC로 코팅된 폴리에스테르 섬유로 만들어진 지오그리드 보강재에 대해 변형률을 달리하여 단일 또는 다단 크리프 하중단계를 포함한 하중을 연속적으로 작용시킴으로써 그 인장파괴강도를 검토하였다. 연구결과, 동일한 변형률에서 지오그리드의 인장파괴강도는 극한인장파괴가 되기 전에 작용된 웅력이력에 의해서 거의 영향을 받지 않는다. 또한 지오그리드의 설계파단강도는 적정한 변형률하에서 정의되어야 하며, 변형률 속도가 빠른 인장시험을 통해 지오그리드의 설계파단강도를 얻을 경우 이에 대한 보정이 필요할 것으로 사료된다.

  • PDF

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites using 3-D Shell Elements (3차원 쉘 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소 해석)

  • Lee, Hyoung-Wook;Huh, Hoon;Kim, Jin-Young;Jeong, Soo-Gyo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.274-279
    • /
    • 2000
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zero-energy modes of the element. An inflation analysis and a lateral deformation analysis of an air spring are carried out. Numerical analysis results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force.

  • PDF

Integrated CAE Analysis to Predict Warpage of Fiber Reinforced Injection Molded Parts (단섬유 보강 사출성형품의 휨 예측을 위한 통합 CAE 해석)

  • Kim, Jin-Gon;Chung, Seong-Taek
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.745-750
    • /
    • 2000
  • A warpage analysis program has been developed for fiber-reinforced injection molded parts. The warpage is Predicted from the residual stress and anisotropic thermo-mechanical properties coupled with fiber orientation in the integrated injection molding simulation. A simple elastic model is used for the calculation of thermally and pressure-induced residual stresses which are employed as the initial conditions in the structural analysis. To improve the reliability of warpage analysis, a new triangular flat shell element superimposing well-known efficient plate bending and membrane element is presented. The numerical examples address the neccesity to use anisotropic models for fiber-reinforced materials and show that predicted warpage is in good agreement with experimentally measured one.

  • PDF

A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites (불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

Optimization for Buckling and Postbuckling Behavior of Stiffened Fiber Reinforced Composite Panels (보강된 섬유강화 복합재료 패널의 좌굴해석 및 파손강도의 최적 설계)

  • Lee, Gwang-Rog;Yang, Won-Ho;Cho, Mung-Rae;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.913-919
    • /
    • 2001
  • In this study, fiber orientation of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, it was investigated that optimum shape for buckling could improve fail load for postbuckling, because it was difficult to investigate the optimization of postbuckling which need long analysis times for nonlinear analysis.

  • PDF

An Evaluation of Coarse Aggregate Mixed Effect on Impact Resistance of Fiber Reinforced Cement-Based Material (섬유보강 시멘트 기반 재료의 내충격 성능에 미치는 굵은 골재 혼입 영향 평가)

  • Lee, Eun-Jin;Kim, Gyu-Yong;Kim, Hong-Seop;Lee, Sang-Gyu;Son, Min-Jae;Yoon, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.37-38
    • /
    • 2016
  • In this study, it evaluate the coarse aggregate mixed effect to impact resistance performance of the fiber reinforced cement-based material. The type of fiber is Hooked-ended steel fiber, and mixed 1vol.% in concrete and cement composites. The impact experiment was conducted by using a spherical shape projectile diameter of 25mm to 170m/s speed and Impact resistance performance was evaluated by measuring the fracture grade, fracture diameter and depth.

  • PDF

Nonlinear Elastic Analysis of Thick Composites with Fiber Waviness Using a FEA Model (FEA 모델을 이용한 굴곡진 보강섬유를 가진 두꺼운 복합재료의 비선셩 거동에 관한 연구)

  • 이승우;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.04a
    • /
    • pp.43-47
    • /
    • 1999
  • A FEA model is proposed to study the effects of fiber waviness on tensile/comprssive nonlinear behaviors of thick unidirectional composites. In the analyses both material and geometical nonlinarities are considered. The predicted results from the FEA model are compared with those obtained from the previous analytical model (thin carpet model) Tensile/compressive tests are also conducted on the specimens with various controlled fiber waviness to obtain the nonlinear behaviors of composites experimentally. The predictions from the FEA model show better agreements with the experiments than those from the analytical model.

  • PDF

Estimation of Punching Shear Strength for Ultra High Performance Concrete Thin Slab (강섬유 보강 초고성능 콘크리트 슬래브의 뚫림 전단 성능 평가)

  • Park, Ji-Hyun;Hong, Sung-gul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.