• Title/Summary/Keyword: 보강재 형상

Search Result 171, Processing Time 0.031 seconds

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements (국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석)

  • Ryue, Jungsoo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.191-199
    • /
    • 2014
  • Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

Effect of Glass Fiber-Reinforced Polymer (GFRP) Shear Connector's Shape on Inplane Shear Strength of Insulated Concrete Sandwich Panels (유리섬유복합체를 사용한 전단연결재 형상에 따른 중단열 벽체의 면내전단내력)

  • Jang, Seok-Joon;You, Young-Chan;Kim, Ho-Ryong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.9-17
    • /
    • 2013
  • This paper describes an experimental program to investigate the shear behavior of insulated concrete sandwich panels (CSPs) with different types of GFRP shear connector. The study included testing of 13 insulated CSP specimens with two types of surface conditions for extruded polystyrene (XPS) insulation and various shapes of shear connectors. All specimens were loaded in direct shear by means of push-out and were consist of three concrete panels, two insulation layer and four rows of GFRP shear connectors. Load-relative slip between concrete panel and insulation response of CSP specimens has been established through push-out shear test. Test results indicate that the surface condition of insulation has a significant effect on the bond strength between concrete panel and insulation. The specimen used XPS foam with 10mm deep slot shows higher bond strength than those used XPS foam with meshed surface. Corrugated GFRP shear connectors show equivalent strength to grid GFRP shear connectors. Cross-sectional area and embedded length of shear connector have a notable effect on overall response and inplane shear strength of the CSP specimens.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Mechanism of steel pipe reinforcement grouting based on tunnel field measurement results (터널 현장 계측결과를 통한 강관보강 그라우팅의 거동 메커니즘)

  • Shin, Hyunkang;Jung, Hyuksang;Lee, Yong-joo;Kim, Nag-young;Ko, Sungil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.133-149
    • /
    • 2021
  • This study aims to report the behavioral mechanism of steel pipe reinforcement grouting, which is being actively used to ensure the stability of the excavation surface during tunnel excavation, based on measurements taken at the actual site. After using a 12 m steel pipe attached with a shape displacement meter and a strain gauge to reinforce the actual tunnel surface, behavioral characteristics were identified by analyzing the measured deformation and stress of the steel pipe. Taking into account that the steel pipes were overlapped every 6 m, the measured data up to 7 m of excavation were used. In addition, the behavioral characteristics of the steel pipe reinforcement according to the difference in strength were also examined by applying steel pipes with different allowable stresses (SGT275 and SGT550). As a result of analyzing the behavior of steel pipes for 7 hours after the first excavation for 1 m and before proceeding with the next excavation, the stress redistribution due to the arching effect caused by the excavation relaxation load was observed. As excavation proceeded by 1 m, the excavated section exhibited the greatest deformation during excavation of 4 to 6 m due to the stress distribution of the three-dimensional relaxation load, and deformation and stress were generated in the steel pipe installed in the ground ahead of the tunnel face. As a result of comparing the behavior of SGT275 steel pipe (yield strength 275 MPa) and SGT550 steel pipe (yield strength 550 MPa), the difference in the amount of deformation was up to 18 times and the stress was up to 12 times; the stronger the steel pipe, the better it was at responding to the relaxation load. In this study, the behavior mechanism of steel pipe reinforcement grouting in response to the arching effect due to the relaxation load was identified based on the measured data during the actual tunnel excavation, and the results were reported.

Numerical analysis of CZ growth process for sapphire crystal of 300 mm length: Part I. Influence of hot zone structure modification on crystal temperature (300 mm 길이의 사파이어 단결정 대한 CZ성장공정의 수치해석: Part I. 핫존 구조 변경이 결정 온도에 미치는 영향)

  • Shin, Ho Yong;Hong, Su Min;Kim, Jong Ho;Jeong, Dae Yong;Im, Jong In
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.265-271
    • /
    • 2013
  • Czochralski (CZ) growth process is one of the most important techniques for growing high quality sapphire single crystal for LED application. In this study, the inductively-heated CZ growth processes for the sapphire crystal of 300 mm length have been analyzed numerically using finite element method. The hot zone structures were modified with the crucible geometry change and the additional insulation layer installed above the crucible. The results show that the solid-liquid interface height decreased from about 80 mm at initial stage to 40 mm after mid-stage due to achieve the growth speed balance. Also the optimal input power of the modified system was similar with the original one due to the compensation effects of the crucible geometry and additional insulation. The crystal temperature grown by the modified CZ grower was increased about 10 K than the original one. Therefore the sapphire crystal of 300 mm height was grown successfully.

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.73-94
    • /
    • 1998
  • In the present study, a method of the three-dimensional limit equilibrium stability analysis of shape of the potential failure wedge for the concave-shaped excavation corner is assumed on the basis of the results of the FLACSU program analysis. Estimation of the three-dimensional seepage forces expected to act on the failure wedge is made by solving the three-dimensional continuity equation of flow with appropriate boundary conditions. By using the proposed method of three-dimensional stability analysis of the concave-shaped excavation corner, a parametric study is performed to examine the reinforcement effect of skew soil nailing system, range of the efficient skew angles and seepage effect on the overall stability. Also examined is the effect of an existence of the right-angled excavation corner on three-dimensional deflection behaviors of the convex-shaped skew soil nailing walls. The results of analyses of the convexshaped excavation corner with skew soil nailing system is further included to illustrate the effects of various design parameters for typical patterns of skew nails reinforcement system.

  • PDF

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

A Study on the 3D Measurement Data Application: The Detailed Restoration Modeling of Mireuksajiseoktap (미륵사지석탑 정밀복원모형 제작을 중심으로 한 3차원 실측데이터의 활용 연구)

  • Moon, Seang Hyen
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.76-95
    • /
    • 2011
  • After dismantled, Mireuksajiseoktap(Stone pagoda of Mireuksa Templesite) is being in the stage of restoration design. Now, different ways - producing restoration model, a 3 dimension simulation - have been requested to make more detailed and clearer restoration design prior to confirmation of its restoration design and actual restoration carry-out. This thesis proposes the way to build the detailed model for better restoration plan using extensively-used Reverse Engineering technique and Rapid Prototyping. It also introduces each stage such as a 3-dimension actual measurement, building database, a 3-dimension simulation etc., to build a desirable model. On the top of that, this thesis reveals that after dismantled, MIruksaji stone pagoda's interior and exterior were not constructed into pieces but wholeness, so that its looks can be grasped in more virtually and clearly. Secondly, this thesis makes a 3-dimension study on the 2-dimension design possible by acquiring basic materials about a 3-dimension design. Thirdly, the individual feature of each member like the change of member location can be comprehended, considering comparing analysis and joint condition of member. Lastly, in the structural perspective this thesis can be used as reference materials for structure reinforcement design by grasping destructed aspects of stone pagoda and weak points of the structure. In dismantlement-repair and restoration work of cultural properties that require delicate attention and exactness, there may be evitable errors on time and space in building reinforcement and restoration design based on a 2-dimension plan. Especially, the more complicate and bigger the subject is, the more difficult an analysis about the status quo and its delicate design are. A series of pre-review, based on the 3-dimension data according to actual measurement, can be one of the effective way to minimize the possibility that errors about time - space happen by building more delicate plan and resolving difficulties.

Development of Optimum Grip System in Developing Design Tensile Strength of GFRP Rebars (GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발)

  • You Young-Chan;Park Ji-Sun;You Young-Jun;Park Young-Hwan;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.947-953
    • /
    • 2005
  • Previous test results showed that the current ASTM(American Standard for Testing and Materials) grip adapter for GFRP(Glass Fiber Reinforced Polymer) rebar was not fully successful in developing the design tensile strength of GFRP rebars with reasonable accuracy. It is because the current ASTM grip adapter which is composed of a pair of rectangular metal blocks of which inner faces are grooved along the longitudinal direction does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The objective of this paper is to provide how to proportion the optimum diameter of inner groove in ASTM grip adapter to develop design tensile strength of GFRP rebar. The proportioning of inner groove in ASTM grip adapter is based on the force equilibrium of GFRP rebar between tensile capacity and minimum frictional resistance required along the grip adapter. The frictional resistance of grip adapter is calculated based on the compressive strain compatibility in radial direction induced by the difference between diameter of GFRP rebar and inner groove In ASTM grip. All testing procedures were made according to the CSA S806-02 recommendations. From the preliminary test results on round-type GFRP rebars, it was found that maximum tensile loads acquired under the same testing conditions is highly affected by the diameter of inner groove in ASTM grip adapter. The grip adapter with specific dimension proportioned by proposed method recorded the highest tensile strength among them.