본 논문에서는 적은 면적의 GP-GPU에서 성능을 향상시키기 위한 방법을 제안한다. 본 논문에서는 superscalar와 같이 과도하게 스케줄링 복잡성을 증가시키지 않는 대신 단순한 코어의 수를 늘려 성능을 극대화 시키는 방법을 제안한다. GP-GPU를 구성하는 Stream Processor의 구조를 단순화한다. 또한, Warp Schedule에서 thread 할당을 어플리케이션에 적합한 방법을 개발하여 성능을 개선한다. 성능을 검증하는 방안으로 neural network의 한 분야인 딥러닝에 대한 스레드 할당방식을 제안한다. Neural Network 알고리즘의 경우 Intel CPU 대비 90%에서 ARM Cortex-A15 4 core 대비 98% 성능 향상을 확인할 수 있었다.
Caffe는 학술 연구용으로 널리 사용되는 신경회로망 학습 소프트웨어이다. 신경회로망 구조 결정에서 가장 중요한 요소에 GPU 기억 용량이 포함된다. 예를 들어 많은 객체 검출 소프트웨어는 신경회로망이 12GB 이하의 기억 용량을 사용하게 하여 하나의 GPU에 적합하게 설계되어 있다. 본 논문에서는 큰 신경회로망을 두 개 이상의 GPU에 분산 저장하여 12GB 이상의 기억 용량을 사용할 수 있게 Caffe를 확장하였다. 확장된 소프트웨어를 검증하기 위하여 3개 GPU를 가진 PC에서 최신 객체 검출 소프트웨어의 배치 크기에 따른 학습 효율을 실험하였다.
본 연구에서는 강우-유출 과정 모의를 위한 GPU 기반 확산파 모형을 개발하였다. 확산파 방정식을 풀기위한 수치기법으로는 유한체적법을 이용하였으며, van Leer TVD limiter를 적용한 MUSCL 기법을 이용하여 각 셀의 인터페이스의 물리적 성질을 재구성하여 구하였다. 또한, 침투를 고려하기 위하여 Horton 침투 모형을 이용하였다. 개발된 모형을 이용하여 1D single overland plane과 2D V-shaped overland에서 강우-유출 과정을 모의실험을 하였으며, 각각 해석해와 dynamic wave model을 이용하여 계산된 수치 결과와 비교하여 본 모형의 정확성을 검증하였다. 또한, 1D와 2D의 기복이 심한 지형에 적용하여 강우-유출과정이 본 모형을 통하여 물리적으로 타당한 해석이 가능함을 검증하였다. 마지막으로 복잡한 실제 지형에 적용하였으며, 측정값과의 비교를 통하여 실제 유역에서의 확산파 모형의 적정성을 검증하였다. 또한, 본 연구에서는 NVIDIA사의 GPU인 Geforce GTX 1050과 GPU의 병렬 연산 처리 능력을 활용할 수 있는 NVIDIA사의 CUDA-Fortran을 이용하여 GPU 기반 확산파 모형을 개발하였다. PC windows에서 CPU(Intel i7, 4.70 GHz) 기반 모형 대비 GPU 기반 모형의 계산속도 성능을 비교한 결과, 격자 간격이 증가할수록 CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 증가하였으며, 격자 간격이 $3200{\times}3200$일 때, CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 최대 약 150배 증가하였다.
컴퓨터 생성 홀로그래피(CGH)는 광파의 진행을 수치적으로 시뮬레이션하여 홀로그램 영상을 합성하는 연구분야이다. 실물 기반 홀로그램으로는 제작하기 어려운 다양한 가상 장면을 다룰 수 있으며 복잡한 광학계 구축 문제로부터 자유로운 장점 등으로 인하여 많은 연구가 진행되고 있다. 특히 대규모 병렬 처리가 가능한 범용 GPU의 발전은 CGH 실용화의 견인차가 되고 있다. 본 고에서는 CGH의 원리 소개와 함께 GPU에 기반한 CGH 고속화의 이슈 및 향후 전망을 살펴보고자 한다.
GPU 를 활용하는 병렬 프로그래밍에 대한 관심이 높아지면서 이에 대한 연구가 활발히 진행되고 있다. GPU 의 성능이 높아지면서 이를 일반 연산에 사용하는 방법으로 NVIDIA 사에서 CUDA 프로그래밍 개발 환경을 제공하고 있다. 본 논문에서는 이 CUDA 프로그래밍 기법을 소개하고, 간단한 예제를 통해 CPU 와 GPU 를 사용하는 방법을 비교한다.
GPGPU 환경에서의 ML 모델이 다양한 분야에 지속적으로 활용되면서, 이미지 분할(image segmentation) 연구가 활발하다. multi-GPU 환경에서 성능 최적화를 위하여 병렬화 기법들이 활용되고 있다. 본 연구에서는 multi-GPU 환경에서 U-Net 모델의 전체 수행 시간을 단축하기 위해 convolution 연산을 최적화하는 기법을 적용하는 실험을 진행하였고 shared memory, data parallelism 를 적용하여 82% 성능 향상을 보여주었다.
현재 프로그램이 운용되는 시스템은 기존의 싱글코어 및 멀티코어 환경을 넘어서 매니코어, 부가 프로세스 및 이기종 환경까지 그 영역이 확장되고 있는 중이다. 하지만, 기존 연구의 경우 NVIDIA 벤더에서 나온 아키텍쳐 및 CUDA로의 병렬화가 주로 이루어졌고 AMD에서 나온 범용 GPU 아키텍쳐인 GCN 아키텍쳐에 대한 성능향상에 관한 연구는 제한적으로 이루어졌다. 이런 점을 고려해 본 논문에서는 GCN 아키텍쳐의 GPGPU 환경인 OpenCL 내에서의 성능향상 기법에 대해 연구하고 실질적인 성능향상을 보였다. 구체적으로, 행렬 곱셈과 컨볼루션을 적용한 GPGPU 프로그램을 본 논문에서 제시한 성능향상 기법을 통해 최대 30% 이상의 실행시간을 감소시켰으며, 커널 이용률 또한 40% 이상 높였다.
본 논문은 SIMT(Single Instruction Multi Thread)구조 GP-GPU(General Purpose Graphic Processing Unit)에서 그래픽 어플리케이션 성능을 향상시키기 위해 타일 기반 그래픽 파이프라인 구조를 제안한다. 타일 기반 그래픽 파이프라인 구조는 병렬적으로 Rasterization 단계를 처리하고, 불필요한 그래픽 처리 연산은 수행하지 않는다. SIMT구조를 통해 대용량 데이터를 병렬로 처리하여 연산 성능을 향상시켰고, 이는 3D 그래픽 파이프라인 처리의 성능을 향상하였다. 제안하는 구조를 통해 3D 그래픽 어플리케이션을 처리할 때 3D 모델을 구성하는 정점 데이터가 많아 질수록 높은 효율을 보인다. 제안하는 구조는 'RAMP'와 기존의 선행 연구를 비교하여 약 1.18배에서 최대 3배까지의 처리 성능 향상을 확인하였다.
본 논문에서는 디스플레이 장치의 화면을 픽셀 단위로 구성하는 Rasterizer의 가속화를 위하여 SIMT구조의 GPGPU(General Purpose computing on Graphics Processing Units)를 사용하였다. GPU는 많은 수의 ALU를 가지고 있고, 병렬처리하기 때문에 연산처리가 매우 빠르다. 따라서 본 논문에서는 연산을 순차적으로 수행하는 CPU와 연산을 병렬적으로 수행하는 GPU를 이용하여 3D그래픽스 모델을 생성하는 rasterizer를 구현했다. 한 프레임 생성 시 Intel CPU를 이용한 rasterizer보다 본 논문에서 제안하는 rasterizer가 1.45배 좋은 성능을 확인하였다.
본 논문은 깊이영상(depth-map image)으로 만든 3차원 객체를 가지고, 디지털 홀로그램을 고속으로 생성하는 기법을 제안한다. 디지털 홀로그램을 생성하는 과정은 여러개의 독립적 처리로 병렬화 할 수 있는 구조이기 때문에 GPU에서 병렬처리함으로써 고속화 할 수 있다. 병렬처리를 이용한 고속화의 효율을 높이기 위해 최근 NVIDIA사에서 발표한 CUDA를 이용하였다. 디지털 홀로그램의 고속 재생을 위한 중간과정에서 GPU상의 고속 메모리의 사용을 극대화하고, 알고리즘 구현을 최적화함으로써 고속화 효율을 높일 수 있었다. 결과적으로 본 논문에서는 기존 CPU에서의 처리속도에 비해 약 64배 정도 속도를 개선할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.