• 제목/요약/키워드: 병렬 GPU

검색결과 315건 처리시간 0.022초

병렬 알고리즘의 가속화를 위한 GP-GPU의 Thread할당 기법 (Thread Distribution Method of GP-GPU for Accelerating Parallel Algorithms)

  • 이관호;김치용
    • 전기전자학회논문지
    • /
    • 제21권1호
    • /
    • pp.92-95
    • /
    • 2017
  • 본 논문에서는 적은 면적의 GP-GPU에서 성능을 향상시키기 위한 방법을 제안한다. 본 논문에서는 superscalar와 같이 과도하게 스케줄링 복잡성을 증가시키지 않는 대신 단순한 코어의 수를 늘려 성능을 극대화 시키는 방법을 제안한다. GP-GPU를 구성하는 Stream Processor의 구조를 단순화한다. 또한, Warp Schedule에서 thread 할당을 어플리케이션에 적합한 방법을 개발하여 성능을 개선한다. 성능을 검증하는 방안으로 neural network의 한 분야인 딥러닝에 대한 스레드 할당방식을 제안한다. Neural Network 알고리즘의 경우 Intel CPU 대비 90%에서 ARM Cortex-A15 4 core 대비 98% 성능 향상을 확인할 수 있었다.

대규모 신경회로망 분산 GPU 기계 학습을 위한 Caffe 확장 (Extending Caffe for Machine Learning of Large Neural Networks Distributed on GPUs)

  • 오종수;이동호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권4호
    • /
    • pp.99-102
    • /
    • 2018
  • Caffe는 학술 연구용으로 널리 사용되는 신경회로망 학습 소프트웨어이다. 신경회로망 구조 결정에서 가장 중요한 요소에 GPU 기억 용량이 포함된다. 예를 들어 많은 객체 검출 소프트웨어는 신경회로망이 12GB 이하의 기억 용량을 사용하게 하여 하나의 GPU에 적합하게 설계되어 있다. 본 논문에서는 큰 신경회로망을 두 개 이상의 GPU에 분산 저장하여 12GB 이상의 기억 용량을 사용할 수 있게 Caffe를 확장하였다. 확장된 소프트웨어를 검증하기 위하여 3개 GPU를 가진 PC에서 최신 객체 검출 소프트웨어의 배치 크기에 따른 학습 효율을 실험하였다.

고해상도 수치기법을 이용한 GPU 기반 2D 확산파 모형 (A 2D GPU-Accelerated High Resolution Numerical Scheme for Solving Diffusive Wave Equation)

  • 박선량;김대홍
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.109-109
    • /
    • 2019
  • 본 연구에서는 강우-유출 과정 모의를 위한 GPU 기반 확산파 모형을 개발하였다. 확산파 방정식을 풀기위한 수치기법으로는 유한체적법을 이용하였으며, van Leer TVD limiter를 적용한 MUSCL 기법을 이용하여 각 셀의 인터페이스의 물리적 성질을 재구성하여 구하였다. 또한, 침투를 고려하기 위하여 Horton 침투 모형을 이용하였다. 개발된 모형을 이용하여 1D single overland plane과 2D V-shaped overland에서 강우-유출 과정을 모의실험을 하였으며, 각각 해석해와 dynamic wave model을 이용하여 계산된 수치 결과와 비교하여 본 모형의 정확성을 검증하였다. 또한, 1D와 2D의 기복이 심한 지형에 적용하여 강우-유출과정이 본 모형을 통하여 물리적으로 타당한 해석이 가능함을 검증하였다. 마지막으로 복잡한 실제 지형에 적용하였으며, 측정값과의 비교를 통하여 실제 유역에서의 확산파 모형의 적정성을 검증하였다. 또한, 본 연구에서는 NVIDIA사의 GPU인 Geforce GTX 1050과 GPU의 병렬 연산 처리 능력을 활용할 수 있는 NVIDIA사의 CUDA-Fortran을 이용하여 GPU 기반 확산파 모형을 개발하였다. PC windows에서 CPU(Intel i7, 4.70 GHz) 기반 모형 대비 GPU 기반 모형의 계산속도 성능을 비교한 결과, 격자 간격이 증가할수록 CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 증가하였으며, 격자 간격이 $3200{\times}3200$일 때, CPU 기반 모형 대비 GPU 기반 모형의 연산 효율이 최대 약 150배 증가하였다.

  • PDF

컴퓨터 생성 홀로그래피의 GPU 기반 가속화 이슈 및 전망

  • 신승협
    • 방송과미디어
    • /
    • 제24권2호
    • /
    • pp.32-38
    • /
    • 2019
  • 컴퓨터 생성 홀로그래피(CGH)는 광파의 진행을 수치적으로 시뮬레이션하여 홀로그램 영상을 합성하는 연구분야이다. 실물 기반 홀로그램으로는 제작하기 어려운 다양한 가상 장면을 다룰 수 있으며 복잡한 광학계 구축 문제로부터 자유로운 장점 등으로 인하여 많은 연구가 진행되고 있다. 특히 대규모 병렬 처리가 가능한 범용 GPU의 발전은 CGH 실용화의 견인차가 되고 있다. 본 고에서는 CGH의 원리 소개와 함께 GPU에 기반한 CGH 고속화의 이슈 및 향후 전망을 살펴보고자 한다.

CUDA 프로그래밍 기법 비교 연구 (A Comparison among Methods using CUDA Programming)

  • 임선영;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.138-139
    • /
    • 2013
  • GPU 를 활용하는 병렬 프로그래밍에 대한 관심이 높아지면서 이에 대한 연구가 활발히 진행되고 있다. GPU 의 성능이 높아지면서 이를 일반 연산에 사용하는 방법으로 NVIDIA 사에서 CUDA 프로그래밍 개발 환경을 제공하고 있다. 본 논문에서는 이 CUDA 프로그래밍 기법을 소개하고, 간단한 예제를 통해 CPU 와 GPU 를 사용하는 방법을 비교한다.

Multi-GPU 환경에서의 Convolution Layer 최적화 실험 (Empirical Experiments for Convolution Layer Optimization on Multi-GPUs)

  • 하지원;테오도라 아두푸;김윤희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.11-12
    • /
    • 2023
  • GPGPU 환경에서의 ML 모델이 다양한 분야에 지속적으로 활용되면서, 이미지 분할(image segmentation) 연구가 활발하다. multi-GPU 환경에서 성능 최적화를 위하여 병렬화 기법들이 활용되고 있다. 본 연구에서는 multi-GPU 환경에서 U-Net 모델의 전체 수행 시간을 단축하기 위해 convolution 연산을 최적화하는 기법을 적용하는 실험을 진행하였고 shared memory, data parallelism 를 적용하여 82% 성능 향상을 보여주었다.

GCN 아키텍쳐 상에서의 OpenCL을 이용한 GPGPU 성능향상 기법 연구 (A Study on GPGPU Performance Improvement Technique on GCN Architecture Using OpenCL API)

  • 우동희;김윤호
    • 한국전자거래학회지
    • /
    • 제23권1호
    • /
    • pp.37-45
    • /
    • 2018
  • 현재 프로그램이 운용되는 시스템은 기존의 싱글코어 및 멀티코어 환경을 넘어서 매니코어, 부가 프로세스 및 이기종 환경까지 그 영역이 확장되고 있는 중이다. 하지만, 기존 연구의 경우 NVIDIA 벤더에서 나온 아키텍쳐 및 CUDA로의 병렬화가 주로 이루어졌고 AMD에서 나온 범용 GPU 아키텍쳐인 GCN 아키텍쳐에 대한 성능향상에 관한 연구는 제한적으로 이루어졌다. 이런 점을 고려해 본 논문에서는 GCN 아키텍쳐의 GPGPU 환경인 OpenCL 내에서의 성능향상 기법에 대해 연구하고 실질적인 성능향상을 보였다. 구체적으로, 행렬 곱셈과 컨볼루션을 적용한 GPGPU 프로그램을 본 논문에서 제시한 성능향상 기법을 통해 최대 30% 이상의 실행시간을 감소시켰으며, 커널 이용률 또한 40% 이상 높였다.

타일 기반 그래픽 파이프라인 구조를 사용한 SIMT 구조 GP-GPU 설계 (Design of a SIMT architecture GP-GPU Using Tile based on Graphic Pipeline Structure)

  • 김도현;김치용
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.75-81
    • /
    • 2016
  • 본 논문은 SIMT(Single Instruction Multi Thread)구조 GP-GPU(General Purpose Graphic Processing Unit)에서 그래픽 어플리케이션 성능을 향상시키기 위해 타일 기반 그래픽 파이프라인 구조를 제안한다. 타일 기반 그래픽 파이프라인 구조는 병렬적으로 Rasterization 단계를 처리하고, 불필요한 그래픽 처리 연산은 수행하지 않는다. SIMT구조를 통해 대용량 데이터를 병렬로 처리하여 연산 성능을 향상시켰고, 이는 3D 그래픽 파이프라인 처리의 성능을 향상하였다. 제안하는 구조를 통해 3D 그래픽 어플리케이션을 처리할 때 3D 모델을 구성하는 정점 데이터가 많아 질수록 높은 효율을 보인다. 제안하는 구조는 'RAMP'와 기존의 선행 연구를 비교하여 약 1.18배에서 최대 3배까지의 처리 성능 향상을 확인하였다.

SIMT 구조 기반 GPGPU를 이용한 고속 Rasterizer 구현 (Implememtation of Fast Rasterizer processing using GPGPU based on SIMT structure)

  • 김치용
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.276-279
    • /
    • 2017
  • 본 논문에서는 디스플레이 장치의 화면을 픽셀 단위로 구성하는 Rasterizer의 가속화를 위하여 SIMT구조의 GPGPU(General Purpose computing on Graphics Processing Units)를 사용하였다. GPU는 많은 수의 ALU를 가지고 있고, 병렬처리하기 때문에 연산처리가 매우 빠르다. 따라서 본 논문에서는 연산을 순차적으로 수행하는 CPU와 연산을 병렬적으로 수행하는 GPU를 이용하여 3D그래픽스 모델을 생성하는 rasterizer를 구현했다. 한 프레임 생성 시 Intel CPU를 이용한 rasterizer보다 본 논문에서 제안하는 rasterizer가 1.45배 좋은 성능을 확인하였다.

GPGPU를 이용한 고속 디지털 홀로그램 생성 기법 (Fast Generating of Digital Hologram Using GPGPU)

  • 송중석;최지윤;서영호;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2010년도 추계학술대회
    • /
    • pp.34-35
    • /
    • 2010
  • 본 논문은 깊이영상(depth-map image)으로 만든 3차원 객체를 가지고, 디지털 홀로그램을 고속으로 생성하는 기법을 제안한다. 디지털 홀로그램을 생성하는 과정은 여러개의 독립적 처리로 병렬화 할 수 있는 구조이기 때문에 GPU에서 병렬처리함으로써 고속화 할 수 있다. 병렬처리를 이용한 고속화의 효율을 높이기 위해 최근 NVIDIA사에서 발표한 CUDA를 이용하였다. 디지털 홀로그램의 고속 재생을 위한 중간과정에서 GPU상의 고속 메모리의 사용을 극대화하고, 알고리즘 구현을 최적화함으로써 고속화 효율을 높일 수 있었다. 결과적으로 본 논문에서는 기존 CPU에서의 처리속도에 비해 약 64배 정도 속도를 개선할 수 있었다.

  • PDF