• Title/Summary/Keyword: 병렬 CRC 생성 방식

Search Result 3, Processing Time 0.025 seconds

Design of BCH Code Decoder using Parallel CRC Generation (병렬 CRC 생성 방식을 활용한 BCH 코드 복호기 설계)

  • Kal, Hong-Ju;Moon, Hyun-Chan;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.333-340
    • /
    • 2018
  • This paper introduces a BCH code decoder using parallel CRC(: Cyclic Redundancy Check) generation. Using a conventional parallel syndrome generator with a LFSR(: Linear Feedback Shift Register), it takes up a lot of space for a short code. The proposed decoder uses the parallel CRC method that is widely used to compute the checksum. This scheme optimizes the a syndrome generator in the decoder by eliminating redundant xor operation compared with the parallel LFSR and thus minimizes chip area and propagation delay. In simulation results, the proposed decoder has accomplished propagation delay reduction of 2.01 ns as compared to the conventional scheme. The proposed decoder has been designed and synthesized in $0.35-{\mu}m$ CMOS process.

Implementation of Parallel Cyclic Redundancy Check Code Encoder and Syndrome Calculator (병렬 CRC코드 생성기 및 Syndrome 계산기의 구현)

  • 김영섭;최송인;박홍식;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.83-91
    • /
    • 1993
  • In the digital transmission system, cyclic redundancy check(CRC) code is widely used because it is easy to be implemented and has good performance in error detection. CRC code generator consists of several shift registers and modulo 2 adders. After manipulation of input data stream in the encoder, the remaining value of shift registers becomes CRC code. At the receiving side, error can be detected and corrected by CRC codes immediately transmitted after data stream. But, in the high speed system such as an A TM switch, it is difficult to implement the serial CRC encoder because of speed limitation of available semiconductor devices. In this paper, we propose the efficient parallel CRC encoder and syndrome calculator to solve the speed problem in implementing these functions using the existing semiconductor technology.

  • PDF

HDL Codes Generator for Cyclic Redundancy Check Codes (순환중복검사 부호용 하드웨어 HDL 코드 생성기)

  • Kim, Hyeon-kyu;Yoo, Ho-young
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.896-900
    • /
    • 2018
  • Traditionally, Linear Shift Feedback Register (LFSR) has been widely employed to implement Cyclic Redundant Check (CRC) codes for a serial input. Since many applications including network and storage systems demand as high throughput as ever, various efforts have been made to implement CRC hardware to support parallel inputs. Among various parallel schemes, the look-ahead scheme is one of the most widely used schemes due to its short critical path. However, it is very cumbersome to design HDL codes for parallel CRC codes since the look-ahead scheme is inevitable to consider how register and input values move in the next cycles. Thus, this paper proposes a novel CRC hardware generator, which automatically produces HDL codes given a CRC polynomial and parallel factor. The experimental results verify the applicability to use the proposed generator by analyzing the synthesis results from the generated HDL code.