최근 활발하게 연구 되고 있는 통계 기반의 기계 번역 시스템에서는 입력 문장이 길어지면 번역 성능이 떨어지는 현상이 나타난다. 이를 완화하기 위해 긴 문장을 같은 의미의 짧은 문장들로 분할하여 각각 번역하면 기계 번역 성능을 향상 시킬 수 있다. 본 논문에서는 통계적 기계 번역을 위한 변환 기반의 문장 분할 방법을 제안한다. 변환 기반의 문장 분할 방법은 사람이 직접 분할한 예문으로부터 변환 규칙을 학습하여 기계 번역의 입력 문장에 적용함으로써 구절 기반의 통계적 기계 번역 성능을 최대화 한다.
본 논문에서는 경계 합성곱 신경망(Convolutional neural network, CNN)기반의 슈퍼 해상도 기법을 이용하여 저해상도 옷감 메쉬를 슈퍼 해상도로 노이즈 없이 안정적으로 표현할 수 있는 기법을 제안한다. 저해상도와 고해상도 메쉬들 간의 쌍은 옷감 시뮬레이션을 통해 얻을 수 있으며, 이렇게 얻어진 데이터를 이용하여 고해상도-저해상도 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 옷감 메쉬를 지오메트리 이미지로 변환하여 사용한다. 우리가 제안하는 경계 합성곱 신경망은 저해상도 이미지를 고해상도 이미지로 업스케일링 시키는 이미지 합성기를 학습시키기 위해 사용된다. 테스트 결과로 얻어진 고해상도 이미지가 고해상도 메쉬로 다시 변환되면, 저해상도 메쉬에 비해 주름이 잘 표현되며, 경계 부근에서 나타나는 노이즈 문제가 완화된다. 합성 결과에 대한 성능으로는 전통적인 물리 기반 시뮬레이션보다 약 10배 정도 빠른 성능을 보여준다.
음성 변환은 다양한 음성 처리 응용에 적용될 수 있으며, 음성 인식을 위한 학습 데이터 증강에도 중요한 역할을 할 수 있다. 기존의 방법은 음성 합성을 이용하여 음성 변환을 수행하는 구조를 사용하여 멜 필터뱅크가 중요한 파라미터로 활용된다. 멜 필터뱅크는 뉴럴 네트워크 학습의 편리성 및 빠른 연산 속도를 제공하지만, 자연스러운 음성파형을 생성하기 위해서는 보코더를 필요로 한다. 또한, 이 방법은 음성 인식을 위한 다양한 데이터를 얻는데 효과적이지 않다. 이 문제를 해결하기 위해 본 논문은 원형 스펙트럼을 사용하여 음성 신호 자체의 변환을 시도하였고, 어텐션 메커니즘으로 스펙트럼 성분 사이의 관계를 효율적으로 찾아내어 변환을 위한 자질을 학습할 수 있는 transformer 네트워크 기반 딥러닝 구조를 제안하였다. 영어 숫자로 구성된 TIDIGITS 데이터를 사용하여 개별 숫자 변환 모델을 학습하였고, 연속 숫자 음성 변환 디코더를 통한 결과를 평가하였다. 30명의 청취 평가자를 모집하여 변환된 음성의 자연성과 유사성에 대해 평가를 진행하였고, 자연성 3.52±0.22 및 유사성 3.89±0.19 품질의 성능을 얻었다.
기계의 주요 부품인 베어링 결함 진단에 딥러닝을 활용하는 연구가 활발하게 진행되어 좋은 성능을 달성하였으나, 학습 데이터와 테스트 데이터의 운영 환경 차이로 인해 기계가 실제로 가동되는 환경에서는 성능 저하가 발생하는 문제가 있다. 학습 데이터와 테스트 데이터의 분포 차이 문제를 다루는 방법으로 데이터 적응이 제안되어 좋은 결과를 보여주고 있으나, 각 방법이 가정하고 있는 특정 적용 시나리오를 벗어나기 어렵다는 제약이 있다. 이에 본 연구는 MFCCs를 이용한 입력 데이터의 변환과 간단한 CNN 구조를 이용해 원시 도메인 데이터로부터 생성된 모델에 대해 추가적인 학습이나 조정 없이 타겟 도메인 데이터에 대한 테스트를 강건하게 수행하는 방법을 제안하였으며, 대표적인 베어링 결함 진단 데이터셋인 CWRU 베어링 데이터를 이용해 제안한 방법에 대한 실험 및 분석을 수행하였다. 실험 결과 전이 학습 기반의 방법들과 대등한 성능을 보였으며, 입력 변환 기반의 베이스라인 방법보다는 최소 15% 정도의 높은 성능을 달성하였다.
본 연구에서는 코퍼스 확률에 기반하여 한국어 표준 발음 생성에 대한 연구를 한다. 기존의 이은영 외 (2005)에서 연구된 규칙기반의 한국어 IPA 발음 변환방식과는 달리 본 연구에서는 음운변환 코퍼스를 바탕으로 표준발음을 변환한다. 이 방식을 위해서 Brill(1995)에서 제안한 변형기반 학습방식이 활용되었으며, 단계적인 처리방식이 아닌 입-출력 대응 방식의 확률적 처리 방식이 제안되었다. 음운변환 방식은 음운규칙에 근거한 처리가 아닌 언어자원인 코퍼스를 활용해서 처리하였다는 점에서 기존의 연구방식과 차이가 있다. 또한, 기존 연구에서는 음운규칙을 단계적으로 적용하여서 입력형이 출력형으로 도출되기 위해서 여러 단계를 거쳤지만, 본 연구에서는 입력형과 출력형의 일대일 대응이라는 점에서 차이점을 보인다.
XML은 언어정보의 재사용성 및 다른 유형의 정보로 변환이 용이하여 최근 그 사용이 급증하고 있다. 그러나 XML은 아직까지 일부 분야에 국한되어 이용되고 있으며, 국내에서도 XML을 실제 활용하여 개발되고 있는 시스템은 극히 미약하다. 본 연구에서는 XML의 이점을 살려 한글을 포함한 다국어간 언어학습 컨텐트를 쉽게 구성하고 가공할 수 있는 XML 문서 내의 다국어 표현 방법에 대해 연구하였다. 또한 다국어 정보를 웹 환경에서 구현하기 위한 XSL과 유사한 문서 변환 구조 및 이를 처리할 수 있는 XML 처리기의 구조에 대해서도 소개한다. 본 연구에서 소개하는 문서 변환 구조를 이용할 경우 문자로 표현 가능한 매체를 매개로 하여 다양한 멀티미디어 컨텐트를 쉽게 작성할 수 있다.
본 논문에서는 음향신호의 배경잡음을 감쇠하기 위한 새로운 알고리즘을 제안한다. 이 알고리즘은 이산 웨이블릿 변환(DWT: Discrete Wavelet Transform) 후 기존의 적응필터를 대신 FNN(: Full-connected Neural Network) 심층학습 알고리즘을 이용하여 잡음감쇠 성능을 개선하였다. 입력신호를 단시간 구간별로 웨이블릿 변환한 다음 1024-1024-512-neuron FNN 딥러닝 모델을 이용하여 잡음이 포함된 단일입력 음성신호로부터 잡음을 제거한다. 이는 시간영역 음성신호를 잡음특성이 잘 표현되도록 시간-주파수영역으로 변환하고 변환 파라미터에 대해 순수 음성신호의 변환 파라미터를 이용한 지도학습을 통하여 잡음환경에서 효과적으로 음성을 예측한다. 본 연구에서 제안한 잡음감쇠시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 사용하면 기존의 적응필터를 사용하는 경우보다 30%, STFT(: Short-Time Fourier Transform) 변환을 사용하는 경우보다는 20%의 평균자승오차(MSE: Mean Square Error) 개선효과를 얻을 수 있었다.
연합학습은 원본 데이터를 공유하지 않고 모델을 학습할 수 있는 각광받는 프라이버시를 위한 학습방법론이다. 이를 위해 참여자의 데이터를 수집하는 대신, 데이터를 인공지능 모델 학습의 요소들(가중치, 기울기 등)로 변환한 뒤, 이를 공유한다. 이러한 강점에 더해 기존 연합학습을 개선하는 방법론들이 추가적으로 연구되고 있다. 기존 연합학습은 모델 가중치를 평균내는 것으로 참여자 간에 동일한 모델 구조를 강요하기 때문에, 참여자 별로 자신의 환경에 알맞은 모델 구조를 사용하기 어렵다. 이를 해결하기 위해 지식 증류 기반의 연합학습 방법(Knowledge Distillation-based Federated Learning)으로 서로 다른 모델 구조를 가질 수 있도록(Model Heterogenousity) 하는 방법이 제시되고 있다. 연합학습은 여러 참여자가 연합하기 때문에 일부 악의적인 참여자로 인한 모델 포이즈닝 공격에 취약하다. 수많은 연구들이 기존 가중치를 기반으로한 연합학습에서의 위협을 연구하였지만, 지식 증류 기반의 연합학습에서는 이러한 위협에 대한 조사가 부족하다. 본 연구에서는 최초로 지식 증류 기반의 연합학습에서의 모델 성능 하락 공격에 대한 위협을 실체화하고자 한다. 이를 위해 우리는 GMA(Gaussian-based Model Poisoning Attack)과 SMA(Sign-Flip based Model Poisoning Attack)을 제안한다. 결과적으로 우리가 제안한 공격 방법은 실험에서 최신 학습 기법에 대해 평균적으로 모델 정확도를 83.43%에서 무작위 추론에 가깝게 떨어뜨리는 것으로 공격 성능을 입증하였다. 우리는 지식 증류 기반의 연합학습의 강건성을 평가하기 위해, 새로운 공격 방법을 제안하였고, 이를통해 현재 지식 증류 기반의 연합학습이 악의적인 공격자에 의한 모델 성능 하락 공격에 취약한 것을 보였다. 우리는 방대한 실험을 통해 제안하는 방법의 성능을 입증하고, 결과적으로 강건성을 높이기 위한 많은 방어 연구가 필요함을 시사한다.
텍스트 스타일 변환은 입력 스타일(source style)로 쓰여진 텍스트의 내용(content)을 유지하며 목적 스타일(target style)의 텍스트로 변환하는 문제이다. 텍스트 스타일 변환을 시퀀스 간 변환 문제(sequence-to-sequence)로 보고 기존 기계학습 모델을 이용해 해결할 수 있지만, 모델 학습에 필요한 각 스타일에 대응되는 병렬 말뭉치를 구하기 어려운 문제점이 있다. 따라서 최근에는 비병렬 말뭉치를 이용해 텍스트 스타일 변환을 수행하는 방법들이 연구되고 있다. 이 연구들은 주로 인코더-디코더 구조의 생성 모델을 사용하기 때문에 입력 문장이 가지고 있는 내용이 누락되거나 다른 내용의 문장이 생성될 수 있는 문제점이 있다. 본 논문에서는 마스크 언어 모델(masked language model)을 이용해 입력 텍스트의 내용을 유지하면서 원하는 스타일로 변경할 수 있는 텍스트 스타일 변환 방법을 제안하고 한국어 긍정-부정, 채팅체-문어체 변환에 적용한다.
최근 e-러닝에서 대두되고 있는 중요한 문제는 곳곳에 산재되어 있는 학습자의 포트폴리오 정보를 표준화 하여 기록하고 이를 학습자의 학습에 다시 활용해야 한다는 것이다. 이를 위해서는 학습자의 포트폴리오의 공유를 위해 포트폴리오의 표준화와 통합 및 관리하는 방법이 필수적이다. 본 연구에서는 개인의 학습이 여러 기관이나 여러 이러닝 사이트를 통해 이루어 지는 상황을 가정하고 포트폴리오를 IMS에서 발표한 ePortfoliio로 표현하며, 이를 Apache Axis를 사용하여 웹 서비스로 관리한다. 기록된 포트폴리오는 필요에 의해 하나로 통합하고 이를 기반한 역량 온톨로지로 변환되어 학습자의 다음 학습에 필요한 콘텐츠를 제시하는 근거로 활용할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.