• Title/Summary/Keyword: 변형 오염지수

Search Result 8, Processing Time 0.025 seconds

The Effects of Bed-rock Formations on Water Quality and Contamination : Statistical Approaches (수자원의 수질과 오염에 대한 기반암의 영향 연구 : 통계학적 접근)

  • 이병선;우남칠
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.415-429
    • /
    • 2003
  • This study was objected to identify the difference of water quality and the characteristics of water contamination in adjacent bed-rock areas of Upper Hwajeonni and Guryongsan Formations in Miwon, Choongchungbuk-do, Korea. Water samples showed mainly (Ca, Mg)-$HCO_3$ type in Upper Hawjeonni Formation and (Ca, Mg)-$SO_4$ and (Ca, Mg)-$HCO_3$ types in Guryongsan Formation indicating the enrichment of $SO_4$ in major compositions. Groundwater quality could be divided into two groups based on the major weathering processes, implied by the ratio of bicarbonate to silica. Carbonate-silicate weathering predominates in Upper Hwajeonni Formation, and silicate weathering in Guryongsan Formation. Stream-water quality also appeared to be controlled by water-rock interaction. Cluster analysis identified three groups of groundwater and four groups of stream-water with distinctive geochemical characteristics. The results of factor analysis indicated that the levels of each chemical constituent in water samples derived from both natural weathering reactions and anthropogenic contamination sources. To delineate the pollution potential of water resources, Modified Pollution Index(M.P.I.) was developed. M.P.I. scores of water samples ranged from -0.08 to 0.18, with mostly positive along the rock quarry in Guryongsan Formation areas. M.P.I. scores appeared to be a useful predictor of metal contamination of water resources.

Consideration of Trends and Applications of Groundwater Vulnerability Assessment Methods in South Korea (지하수 오염취약성 평가 기법 동향과 국내 적용성 고찰)

  • Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.1-16
    • /
    • 2008
  • There are generally two types of groundwater vulnerability assessments. Intrinsic vulnerability is based on the assessment of natural climatic, geological and hydrogeological attributes and specific vulnerability relates to a specific contaminant, contaminant class, or human activity. Several methods to assess groundwater vulnerability, which are based on hydrogeologic setting and socio-economical environment, have been developed in USA and Europe. A Modified-DRASTIC model including a lineament factor has been developed in South Korea, but it still has some limitations. To develop a solid and applicable method in this country, many data of quality, hydraulic features, GIS data, and pollution source, produced from a Basic Survey based on Article 5 of the Groundwater Act and other research projects, need to be collected, analyzed and verified introducing the previous methods.

Application on Multi-biomarker Assessment in Environmental Health Status Monitoring of Coastal System (해역 건강도 평가를 위한 다매체 바이오마커 적용)

  • Jung, Jee-Hyun;Ryu, Tae-Kwon;Lee, Taek-Kyun
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2008
  • Application of biomarkers for assessing marine environmental health risk is a relatively new field. According to the National Research Council and the World Health Organization, biomarkers can be divided into three classes: biomarkers of exposure, biomarkers of effect, and biomarkers of susceptibility. In order to assess exposure to or effect of the environmental pollutants on marine ecosystem, the following set of biomarkers can be examined: detoxification, oxidative stress, biotransformation products, stress responses, apoptosis, physiological metabolisms, neuromuscular responses, reproductions, steroid hormones, antioxidants, genetic modifications. Since early 1990s, several biomarker research groups have developed health indices of marine organisms to be used for assessing the state of the marine environment. Biomarker indices can be used to interpret data obtained from monitoring biological effects. In this review, we will summarize Health assessment Index, Biomarker Index, Bioeffect Assessment Index and Generalized Linear Model. Measurements of biomarker responses and development of biomarker index in marine organisms from contaminated sites offer great a lot of information, which can be used in environmental monitoring programs, designed for various aspects of ecosystem risk assessment.

Regenerative procedure using rotary titanium brush for surface decontamination of peri-implantitis: 3 cases with a 2-year follow-up (회전형 타이타늄 브러쉬를 이용한 임플란트 주위염 재생술식: 2년 추적결과 증례 보고)

  • Baek, Min-Woo;Yu, Jeoung-A;Choi, Seong-Ho;Lee, Dong-Woon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.259-267
    • /
    • 2021
  • Peri-implantitis, in which inflammation caused by plaque and biofilm on the implant surface spreads to the hard tissue, can be treated by decontamination of the implant surface and reconstruction of the lost hard tissue through surgical methods. We have described the management of 3 peri-implantitis cases by decontamination of the implant surface using a round titanium brush and regenerative therapy. All cases showed clinical improvements, and no further radiographic bone loss was observed during a 2-year follow-up. This treatment method can be effective for clinical improvement and bone regeneration. However, a longer follow-up period is necessary to support these outcomes.

Evaluation of Stability and Settlement of In-Situ Capping of Contaminated Sediments Using Zeolites and Sands (제올라이트를 이용한 해저오염토 피복 공법 후 안정성 및 침하 평가)

  • Ji, Subin;Lee, Kicheol;Lee, Jangguen;Kim, Dongwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.23-33
    • /
    • 2016
  • This study evaluated the stability and deformation subsea foundation after implementation of the contaminant isolation method by covering the contaminated materials using Zeolite and sands under subsea condition. The appropriate contaminant adsorption materials used in this study was selected as Zeolite based on the existing research results due to its efficiency. Safety (or stability) was evaluated by calculation and to analyze deformation after completing the contaminant isolation method. The minimum safety factors from slope stability analyses results were 30.1 and 11.2 depending on subsea submerged conditions and the amount of the maximum primary consolidation settlement from consolidation analysis results was 209.2 mm. In addition, change of consolidation amount with increasing consolidation time was evaluated based on consolidation degree.

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.

Development of Demand Forecasting Model for Seoul Shared Bicycle (서울시 공유자전거의 수요 예측 모델 개발)

  • Lim, Heejong;Chung, Kwanghun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.132-140
    • /
    • 2019
  • Recently, many cities around the world introduced and operated shared bicycle system to reduce the traffic and air pollution. Seoul also provides shared bicycle service called as "Ddareungi" since 2015. As the use of shared bicycle increases, the demand for bicycle in each station is also increasing. In addition to the restriction on budget, however, there are managerial issues due to the different demands of each station. Currently, while bicycle rebalancing is used to resolve the huge imbalance of demands among many stations, forecasting uncertain demand at the future is more important problem in practice. In this paper, we develop forecasting model for demand for Seoul shared bicycle using statistical time series analysis and apply our model to the real data. In particular, we apply Holt-Winters method which was used to forecast electricity demand, and perform sensitivity analysis on the parameters that affect on real demand forecasting.