• Title/Summary/Keyword: 변형해석

Search Result 4,845, Processing Time 0.035 seconds

Interpretation of Landscape Elements in Borimsa Temple after 17th Century (17세기 이후 장흥 보림사(長興 寶林寺)의 경관요소 해석)

  • Kim, Kyu-Won;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.1
    • /
    • pp.110-118
    • /
    • 2015
  • Borimsa Temple in Jangheung, one of the Goosanseonmoon of Shilla Dynasty, calls for a study in the field of landscape architecture because it has very significant elements in cultural and ecological landscaping aspects. This study examined the changes in landscaping elements of Borimsa Temple since the 17th century in order to newly recognize cultural landscaping value of space composition elements for traditional temple and to verify landscape architectural position. For research method, literatures such as Sajeonggi (事蹟記), Joongchanggi, a surveyed map by Fujishima Gaijiro in 1928 and Joseon Gojeogdobo (朝鮮古蹟圖譜) and modern documents including Borimsa Temple Precision Ground Survey Report and photographic records of National Archives of Korea and provincial governments were examined together with a field survey in order to trace changes in landscape elements such as buildings within the temple site, pond and temple forest. The results are as the following: First, for geographical locations of Borimsa Temple, it is located in an auspicious location and Shipyuknahansang and Cheonbul were placed in a supplementary purpose according to the contents of Bojoseonsatapbi. Compared to Namhwaseonsa Temple in China, it has a similar environmental composition but the fact that buildings were placed on platforms is a distinctive difference. Second, architectural landscape of Borimsa Temple went through the Japanese colonial era and Korean War and still going through changes today. Thus, there shall be some appropriate measures such as to establish an archive of past landscape data. Third, the contents of Borimsa Temple Sajeonggi suggests that the pond of Borimsa Temple had been in a indeterminate form with stones on the outer edge. Its name could have been Yongcheon (湧泉) according to the contents of Joongchanggi. Also, the current landscape, in comparison with past photographs, is a result of changes from surface raise occurred by ground reinforcement within the temple site. Fourth, Jangsaengpyoju (長生標柱) mentioned in Bojoseonsatapbi and Borimsa Temple Sajeonggi was thought to be the dried juniper tree in front of Daewoongbojeon, which can be found in past photographic documents but, it is now assumed to be Seokbihyeong (石碑形) considering the Gukjangsaeng and Hwangjangsaeng of Dogapsa Temple of the similar time period. Moreover, Hongsalmoon mentioned in Joongchanggi was established by King's order after the Manchu war of 1636 in praising of Buddhist monks those who had volunteered to fight for the country. Fifth, it is apparent in Borimsa Temple Joongchanggi that geomancy was a consideration in landscaping process of Borimsa Temple, and the record indicates that pine trees, bo trees and persimmon trees were planted. Sixth, tea tree forest was verified of its historical root that is Seongchailyeo from Unified Shilla through passing down of Jeong Yak-yong's Goojeunggoopo method and relevant documents of Seon Master Choui and Yi Yu-won. Seventh, nutmeg tree forest suggests that nutmegs were used in national ceremonies and for medical uses. The nutmeg tree forest was also verified of its role as Naehwasoorimdae (a forest built to prevent fire from spreading) through aerial photographs and placement of a forest reserve.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

Crustal Characteristics and Structure of the Ulleung Basin, the East Sea (Japan Sea), Inferred from Seismic, Gravity and Magnetic Data (탄성파 및 중자력자료에 의한 울릉분지의 지각특성 및 구조 연구)

  • Huh, Sik;Kim, Han-Jun;Yoo, Hai-Soo;Park, Chan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.95-104
    • /
    • 2000
  • Depths to four seismic sequence boundaries and the thickness of each sequence were estimated and mapped based on multi-channel seismic data in the Ulleung Basin. These depth-structure and isopach maps were incorporated into the interpretation of gravity and magnetic anomaly maps. The sediment thickness ranges from 3,000 m to 4,000 m in the central basin, while it reaches 6,000 m locally along the southwestern, western, and southeastern margins. The acoustic basement forms a northeast-southwest elongated depression deeper than 5000 m, and locally deepens up to 7,500 m in the southwestern and western margins. Low gravity anomalies along the western and southern margins are associated with basement depressions with thick sediment as well as the transitional crust between the continental and oceanic crusts. Higher gravity anomalies, dominant in the central Ulleung basin, broaden from southwest toward northeast, are likely due to the shallow mantle and a dense crust. A pair of magnetic elongations in the southeastern and northwestern margins appear to separate the central Ulleung basin from its margin. These magnetic elongations are largely dominated by intrusive or extrusive volcanics which occurred along the rifted margin of the Ulleung basin formed during the basin opening. The crust in the central Ulleung Basin, surrounded by the magnetic elongations, is possibly oceanic as inferred from the seismic velocity. The oceanic crust can be mapped in the central zone where it widens to 120 km from the southwest toward northeast. Bending of the crustal boundary in the southern part of the Ulleung Basin suggests that the Ulleung Basin has been deformed by a collision of the Phillipine plate into the Japan arc.

  • PDF

Devonian Strata in Imjingang Belt of the Central Korean Peninsula: Imjin System (임진강대의 중부 고생대층: 임진계)

  • Choi, Yong-Mi;Choh, Suk-Joo;Lee, Jeong-Hyun;Lee, Dong-Chan;Lee, Jeong-Gu;Kwon, Yi-Kyun;Cao, Lin;Lee, Dong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.107-124
    • /
    • 2015
  • The 'Imjin System' (or Rimjin System) was established in 1962 as a new stratigraphic unit separated from the Upper Paleozoic Pyeongan System based on the discovery of brachiopods and echinoderms of possible Devonian age. Subsequent discoveries of the Middle Devonian charophytes confirmed the Devonian age of the system. The Imjin System is distributed in the Imjingang Belt between the Pyongnam Basin and the Gyeonggi Massif, spans from the eastern areas including Cholwon-gun of the Gangwon Province, Gumchon-gun, Phanmun-gun, and Tosan-gun of the Hwanghaebuk Province, to the western areas of Gangryong-gun and Ongjin-gun of the Hwanghaenam Province, and includes the Yeoncheon Group (metamorphic complex) to the south. Unlike the lower Paleozoic strata in the Pyongnam Basin which solely produce marine invertebrate fossils, the Imjin System yields diverse non-marine plant and algal fossils. Brachiopods of the system are similar to those from the Devonian of the South China Block and include taxa endemic to the platform, implying a close paleogeographic affinity to the South China Block. The Imjin System is generally considered as of Middle to Late Devonian in age, although there have been suggestions that the system is of the Middle Devonian to Carboniferous in age. North Korean workers postulated that the Imjin System was deposited in the current geographic position, where the "Imjin Sea" (an extension of the South China Platform) was located during the Devonian. The Imjin System displays strong local variations in stratigraphy and its thickness. It has recently been reported that the strata are repeated and overturned by thrust faults in many exposures. The Yeoncheon Group a southward extension of the Imjin System, also experienced intense tight folding and contractional deformation. Northward decrease in metamorphic grade within the system suggests that the northern part of the Gyeonggi Massif and the Imjingang Belt are probably an extension of the Dabie-Sulu Belt between the South China and Sino-Korean blocks, and the Imjin System is an remnant of accretion resulted from the collision between the two blocks. In order to understand tectonic evolution and Paleozoic paleogeography of eastern Asia, further studies on stratigraphic, sedimentologic and tectonic evolution of the Imjin System involving scientists from the two Koreas are urgently needed.

A Comparative Analysis on Inquiry Activities in Geology of High School Earth Science Textbooks of Korea and the U.S. (한국과 미국 고등학교 지구과학 교과서의 지질학 탐구활동의 비교 분석)

  • Bae, Hyun-Kyung;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.626-639
    • /
    • 2008
  • To present the suggestions for improvement in science textbooks of high school, scientific inquiry activities in geology of earth science textbooks of Korea and the U.S. were assessed in the areas of the contents, processes and contexts. Regarding the contents of inquiry activities, Korean textbooks contain more number of inquiry activities (5.8 per section) than the U.S. curriculums (4 per section). Inquiry activities of Korean textbooks mostly fall on the interpretation of diagrams and graphs whereas those of the U.S. textbooks more hands-on experiment, data transformation and self designing. As for the number of inquiry process skills per inquiry activity, Korean curriculums contain an average of 1.8 whereas the American ones 3. It suggests that the U.S. textbooks require more integrated process skills than the Korean earth science curriculums. In the process skills of all textbooks studied, the highest frequent elements were inferring and data interpretation; the percentage of these two elements was an average of 73.3% in Korean textbooks and 46.2% in the U.S. This suggests that the Korean textbooks emphasize the process skill on particular area, and uneven distribution of elements of process skills may hinder the development of integration ability of students. particularly in the integrated process skills, the U.S. textbooks presented all 7 elements, while Korean ones presented only 2 to 4 elements, indicating that the Korean textbooks may have weak points in providing various inquiry activities for students compared to the American textbooks. In inquiry context analysis, Korean curriculums provide simplistic inquiry contexts and low applicability to real life whereas the U.S. curriculums provide more integrated inquiry contexts and high applicability to real life.

Genetic Relationship and Structural Characteristics of the Fe-Ti Ore Body and the Sancheong Anorthosite, Korea (산청 회장암과 철-티탄 광체의 구조적 특징과 발생적 관계)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.571-588
    • /
    • 2014
  • It consists of the Precambrian Jirisan metamorphic complex and Sancheong anorthosite complex and the Mesozoic granitoids which intrude them in the Sancheong area, the Jirisan province of Yeongnam massif, Korea. The study area is located in the western part of the stock-type Sancheong anorthosite complex. We performed a detailed fieldwork on the Sancheong anorthosite (SA) and Fe-Ti ore body (FTO) which constitute the Sancheong anorthosite complex, and reinterpreted the origin of FTO foliation and the genetic relationship between them from the foliations, shear zones, occurrences of the SA and FTO. The new structural characteristics between them are as follows: the multilayer structures of FTO, the derived veins of straight, anastomosing uneven types and block structures related to the size reduction of SA, the gradual or irregular boundaries of SA blocks and FTO showing bulbous lobate margins and comb structures, the FTO foliation and linear arrangements of flow occurrence which is not ductile shear deformation, the discontinuous shear zone of SA, the orientation of FTO foliations parallel to the boundaries of SA blocks, the predominance of FTO foliations toward the boundaries of SA blocks and being proportional to the aspect ratio of plagioclase xenocrysts and SA xenoblocks, and the flow folding structures of FTO foliation. Such field evidences indicate that the SA is not fully congealed when the FTO is melt and the fracturing of partly congealed SA causes the derived veins of FTO and the size reduction of SA. Also the gradual or irregular boundaries of SA blocks and FTO result from the mutual reaction between the not fully congealed SA blocks and the FTO melt, and the FTO foliation is a magmatic foliation which was formed by the interaction between the FTO melt and the partly congealed SA blocks. Therefore, these suggest that the SA and FTO are not formed from the intrusion of different magmas in genesis and age but from a coeval and cogenetic magma through multiple fractionation. We predict that the FTO will show an very irregular occurrence injected along irregular fractures, not the regular occurrence like as the intrusive vein and dike. It can be applied to the designing of Fe-Ti mineral resource exploration in this area.

Distancing Philosophy from the Real Ruling Power, a Philosophical Belief or an Opportunist Behavior Compromising with Reality? - centered on Kim Tae-Gil - (현실 권력과의 거리두기 철학(함), 철학적 소신인가 현실 타협적 기회주의 행태인가 -김태길을 중심으로-)

  • Sunwoo, Hyun
    • Journal of Korean Philosophical Society
    • /
    • v.129
    • /
    • pp.111-140
    • /
    • 2014
  • In this paper, the main subjects with which I deal are as follows: (1) Is Distancing Philosophy from the real ruling power a way of practical-philosophical resistance, based on social reformation as a axiological directivity of Kim Tae-Gil's ethical thought, though it is negative type of resistance? Or is it a sort of transformed value-free opportunist behavior which allows antidemocratic ruling group to coerce the people into submission, assuming an uncompromising stand seemingly? (2) Is Kim's defense argument on the opening of the course of National Ethics and the all-out activation of National Ethics education under Park's Yushin Regime derived from his own philosophical belief? Or is it brought out from the external conditions and circumstances surrounding Kim Tae-Gil which forces him to participate in the national undertaking for the settlement of the course of National Ethics in the university? The 'provisional' answers about the two subjects are as follows: (1) Kim's Distancing Philosophy is a type of practical philosophical revolt against the dictatorship power under Yushin Regime, though it is negative form of resistance. We can accept this philosophical elucidation above all by confirming the fact that the reform of reality is the main ethical trait running through his entire ethical thought system. However distancing philosophy disclose the crucial limits to allow itself to boil to the philosophical practice compromising with real ruling power eventually, though it is intended upon its own social ethical directivity and conviction. (2) The primary factor which affects Kim to propose such an advocation argument on the course of National Ethics and the education of National Ethics is the external conditions and circumstances surrounding him, especially the power-relation between he and ruling group and intimate human relation between he and his superior philosophers who carries out the role of a ideologue for the Yushin Regime, rather than his own philosophical belief. But no matter what primary factor, Kim's action to make a advocating argument to support the course and the education of National Ethics is to blame, on that account that he cannot adequately his social responsibility and role given to him as a reformist moral philosopher who will pursue the realization of righteous democratic society. Along with that, It is not too enough to criticize him sharply for such defending action. The reason is that his supporting stance for National Ethics education is brought out, by not adhering closely to the philosophical way of distancing from the dictatorial power devoid of political legitimacy and moral justification.

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System (양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구)

  • Lee, Jinhyun;Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-209
    • /
    • 2016
  • The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.