• Title/Summary/Keyword: 변형률-수명법

Search Result 27, Processing Time 0.022 seconds

Finite Element Analysis on the Sealing Behavior and Endurance Safety of O-rings with a V-groove (V홈을 갖는 오링의 밀봉거동과 내구 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.73-80
    • /
    • 2013
  • This study presents sealing behavior and endurance safety of V-grooved o-rings as functions of a strain, compression stress, and contact normal stress using a FEM technique. The FEM results on the sealing behavior and endurance safety show that the maximum strain, maximum compression stress, and maximum contact normal stress of V-grooved o-rings are approximately 1.2 times higher than those of conventional solid o-rings. This is why that an o-ring has a V-groove in the center between two overlapped circles, which is very effective in sealing for ball valves, pressure vessels, and gas equipment. And the extrusion failure in V-grooved o-rings does not take place under an increased gas pressure due to a V-groove. This may extend sealing life compared with that of a conventional solid o-ring.

Pin Pull Characteristics of Pin Lead with Variation of Mechanical Properties of Pin Lead in PGA (Pin Grid Array) Package (PGA (Pin Grid Array) 패키지의 Lead Pin의 기계적 특성에 따른 Pin Pull 거동 특성 해석)

  • Cho, Seung-Hyun;Choi, Jin-Won;Park, Gyun-Myoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • In this study, von Mises stress and total strain energy density characteristics of lead pin in PGA (Pin Grid Array) packages have been calculated by using the FEM (Finite Element Method). FEM computation is carried out with various heat treatment conditions of lead pin material under $20^{\circ}$ bending and 50 mm tension condition. Results show that von Mises stress locally concentrated on lead pin corners and interface between lead pin head and solder. von Mises stress and total strain energy density decrease as heat treatment temperature of lead pin increases. Also, round shaped corner of lead pin decreases both von Mises stress and total strain energy density on interface between lead pin head and solder. This means that PGA package reliability can be improved by changing the mechanical property of lead pin through heat treatment. This has been known that solder fatigue life decreases as total strain energy density of solder increases. Therefore, it is recommended that both optimized lead pin shape and optimized material property with high lead pin heat treatment temperature determine better PGA package reliability.

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

Low Cycle Fatigue Life Behavior of GFRP Coated Aluminum Plates According to Layup Number (적층수에 따른 GFRP 피막 Al 평활재의 저주기 피로수명 평가)

  • Myung, Nohjun;Seo, Jihye;Lee, Eunkyun;Choi, Nak-Sam
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.332-339
    • /
    • 2018
  • Fiber metal hybrid laminate (FML) can be used as an economic material with superior mechanical properties and light weight than conventional metal by bonding of metal and FRP. However, there are disadvantages that it is difficult to predict fracture behavior because of the large difference in properties depending on the type of fiber and lamination conditions. In this paper, we study the failure behavior of hybrid materials with laminated glass fiber reinforced plastics (GFRP, GEP118, woven type) in Al6061-T6 alloy. The Al alloys were coated with GFRP 1, 3, and 5 layers, and fracture behavior was analyzed by using a static test and a low cycle fatigue test. In the low cycle fatigue test, strain - life analysis and the total strain energy density method were used to analyze and predict the fatigue life. The Al alloy did not have tensile properties strengthening effect due to the GFRP coating. The fatigue hysteresis geometry followed the behavior of the Al alloy, the base material, regardless of the GFRP coating and number of coatings. As a result of the low cycle fatigue test, the fatigue strength was increased by the coating of GFRP, but it did not increase proportionally with the number of GFRP layers.

A Study on the Residual Stress Evaluation of Autofrettaged SCM440 High Strength Steel (자긴가공된 SCM440 고강도강의 잔류응력평가에 관한 연구)

  • Kim, Jae-Hoon;Shim, Woo-Sung;Yoon, Young-Kwen;Lee, Young-Shin;Cha, Ki-Up;Hong, Suck-Kyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. The purpose of the present paper is to predict the accurate residual stress of SCM440 high strength steel using the Kendall model which was adopted by ASME Code. Hydraulic pressure process was applied in the inner part and thick-walled cylinders were autofrettaged up to 30% overstrain levels. Electro polishing on the surface of autofrettage specimen was performed to get more accurate residual stress. Residual stresses were measured by X-ray diffraction method. The autofrettage surface which was plastically deformed analyzed using a scanning electron microscope(SEM). Although there were some differences in measured residual stress and numerical results, it has a tendency to agree comparatively with each other.

Development of Modified Creep-Fatigue Damage Model for High Temperature Life Prediction (고온 수명평가를 위한 수정 크립-피로 손상모델의 걔발)

  • Park, Jong-Joo;Seok, Chang-Sung;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3424-3432
    • /
    • 1996
  • For mechanical system operating at high temperature, damage due to the interaction effect of creep and fatigue plays an important role. The objective of this paper is to develop a modified creep-fatigue damage model which separately analyzes the pure creep damage for hold time and the creep-fatigue interaction damage during startup and shutdown period. The creep damage was calculated by the general creep damage equation and the creep-fatigue interaction damage was calculated by the modified equation which is based on the frequency modified strain range method with strain rate term. In order to verify the proposed model, a service of high temperature low cycle fatigue tests were performed. The test specimens were made from inconel-718 superalloy and the test parameters were wave shape and hold time. A good agreement between the predicted lives based on the proposed model and experimentally obtained ones was observed.

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF