• Title/Summary/Keyword: 변형률 요소

Search Result 702, Processing Time 0.024 seconds

A Study on Mechanical Characteristics and Behaviors of FRP Composite with Three Different types of Matrices under High Temperature (온도 및 매트릭스 특성 변화에 따른 섬유강화 복합재료의 역학적 특성 및 구조적 거동 변화)

  • Jung, Woo-Young;Jang, Jun-Ho;Back, Min-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2008
  • Fiber Reinforced Polymer (FRP) composites are used extensively in aerospace, marine, automotive, infrastructure, chemical processing and sporting good applications. A concern with using FRP composites in some engineering structures is their high flammability and poor fire resistance In this research, material properties of FRP composites at increasingly high temperatures was measured and verified. The obtained mechanical properties of FRP composites were performed according to ASTM D3039/D3039M and tested to a wide range of heat conditions with temperatures from Room-temp. to 300 for times up to 30 min. It is found that the mechanical properties of FRP composites dropped with increasing heat or temperature. The reduction to the properties was due mainly to thermal degradation and combustion of the polymer matrix.

Estimation of the Behavior of a Micropile due to Horizontal Load (횡방향 하중에 의한 마이크로파일의 거동 평가)

  • Lee, Seongmin;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.117-123
    • /
    • 2009
  • The mechanical behavior of a micropile due to horizontal load has not yet clearly identified in Korea. It has generally estimated from that of a traditional pile because there is no standard method even though it has shorter length. To tell the truth, its behavior is very different from a traditional pile's. Specifically, it is general fact that horizontal resistance of earth is one of the main factors to control the mechanical behavior of micropile. To this reason, a laboratory model has been made in this study to estimate the behavior of a micropile which loaded increasingly horizontally. The laboratory model has been designed to estimate both the behavior of load to displacement and skin friction to displacement. And the analysis of the latter was compared with the solution of strain wedge model. In the end, it was proved that the mechanical behavior of a micropile should be estimated from considering the horizontal resistance of earth.

  • PDF

Evaluation of Biomechanical Stability of Newly Developed Revision Total Knee Arthroplasty through Strain and Stress Distribution Analysis within the Tibia: Finite Element Analysis (경골 내 변형률 및 응력 분포 특성 분석을 통한 새로이 개발된 재치환용 인공슬관절의 생체역학적 안정성 평가: 유한요소해석)

  • Han, Paul;Jang, Young-Woong;Yoo, Oui Sik;Kim, Jung Sung;Kim, Han Sung;Lim, Dohyung
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • In this study, biomechanical stability of the newly developed revision total knee arthroplasty (rTKA) was evaluated through strain and stress distribution analysis within the implanted proximal tibia using a three-dimensional finite element (FE) analysis. 2000N of compressive load (about 3 times body weight) was applied to the condyle surface on spacer, sharing by the medial (60%) and lateral (40%) condyles simulating a stance phase before toe-off. The results showed that PVMS within the revision total knee arthroplasty and the proximal tibia were less than yield strength considering safe factor 4.0 (rTKA: less than 10%, Cortical bone: less than 70%, Cancellous bone: less than 70%). The materials composed of them and the strain and stress distributions within the proximal tibia were generally well matched with those of a traditional revision total knee arthoplasty (Scorpio TS revision system, Stryker Corp., Michigan, USA) without the critical damage strain and stress, which may reduce the capacity for bone remodeling, leading to bone degeneration. This study may be useful to design parameter improvement of the revision total knee arthoplasty in biomechanical stability point of view beyond structural stability of revision total knee arthoplasty itself.

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

Evaluation of Effect of Plastic Gradient on the Behavior of Single Grain inside Polycrystalline Solids (소성 구배의 영향을 고려한 다결정 고체 내부의 결정 거동 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • Plastic gradient from geometrically necessary dislocation(GND) can strongly affect micro-scale plastic behavior of polycrystalline solids. In this research, mechanical behavior of polycrystalline solid is investigated using the finite element method incorporating plastic gradient from GND effect. Gradient hardness coefficient and material length parameter are used to evaluate the effect of the plastic gradient on the behavior of materials. Sensitivity of the modeling parameters on the plastic gradient from GND is presented and effects of plastic gradient and material parameters on the behavior of single crystal inside a polycrystalline aggregate are investigated. It is confirmed that the plastic gradient from GND amplifies hardening response of polycrystals and affects single crystal behavior embedded in polycrystalline solids.

Analysis on Flexural Behavior of Spiral Steel Pipe Considering Residual Stress Developed by Pipe Manufacturing (조관에 의한 잔류 응력을 고려한 스파이럴 강관의 휨 거동 분석)

  • Kim, Kyuwon;Kim, Jeongsoo;Kang, Dongyoon;Kim, Moon Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • A spiral steel pipe has been more used widely as a structural member as well as transport pipeline because the pipe can be manufactured continuously, consequently more economical than the conventional UOE pipe. As improved pipe manufacture technology makes spiral pipes to have high strength and to have larger diameters, the spiral pipes have been recently used as long distance transport pipeline with a large diameter and strain-based design is thus required to keep structural integrity and cost effectiveness of the spiral pipe. However, design codes of spiral pipe have not been completely established yet, and structural behaviors of a spiral pipe are not clearly understood for strain-based design. In this paper, the effects of residual stresses due to the spiral pipe manufacture process are investigated on the flexural behavior of the spiral pipe. Finite element analyses were conducted to estimate residual stresses due to the manufacturing process for the pipes which have different forming angle, thickness, and strength, respectively. After that, the results were used as initial conditions for flexural analysis of the pipe to numerically investigate its flexural behaviors.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Progressive Damage Analysis of Plain Weave Fabric CFRP Orthogonal Grid Shell Under Bending Load (굽힘 하중을 받는 평직물 CFRP 직교 격자 쉘의 점진적 손상 해석)

  • Lim, Sung June;Baek, Sang Min;Kim, Min Sung;Park, Min Young;Park, Chan Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.256-265
    • /
    • 2019
  • In this paper, the progressive damage of an orthogonal grid shell fabricated with plain weave fabric CFRP under bending load was investigated. The orthogonal grids were cured with the bottom composite shell. Progressive damage analysis of an orthogonal grid shell under bending was performed using nonlinear finite element method with Hashin-Rotem failure criterion and Matzenmiller-Lubliner-Taylor(MLT) model. In addition, the three - point bending test for the structure was carried out and the test results were compared with the analysis results. The comparison results of the strain and displacement agreed well. The damage area estimated by the progressive damage analysis were compared with the visual inspection and ultrasonic non-destructive inspection.

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection (하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향)

  • Lee, Ki-Won;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.182-192
    • /
    • 2022
  • Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.