• Title/Summary/Keyword: 변형률 요소

Search Result 702, Processing Time 0.027 seconds

Residual Stress Estimation and Fatigue Life Prediction of an Autofrettaged Pressure Vessel (자긴가공된 압력용기의 잔류응력 평가 및 피로수명 예측)

  • Song, Kyung Jin;Kim, Eun Kyum;Koh, Seung Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.845-851
    • /
    • 2017
  • Fatigue failure of an autofrettaged pressure vessel with a groove at the outside surface occurs owing to the fatigue crack initiation and propagation at the groove root. In order to predict the fatigue life of the autofrettaged pressure vessel, residual stresses in the autofrettaged pressure vessel were evaluated using the finite element method, and the fatigue properties of the pressure vessel steel were obtained from the fatigue tests. Fatigue life of a pressure vessel obtained through summation of the crack initiation and propagation lives was calculated to be 2,598 cycles for an 80% autofrettaged pressure vessel subjected to a pulsating internal pressure of 424 MPa.

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method (광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석)

  • Li, Weizheng;Baek, Tae-Hyun;Hong, Dong-Pyo;Lee, Byung-Hee;Seo, Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

Study on Vibration Characteristics in Terms of Airfoil Cross-Sectional Shape by using Co-Rotational Plane Beam Transient Analysis (Co-Rotational 보의 과도상태해석을 이용한 에어포일 단면 형상 변화에 따른 진동특성 연구)

  • Kim, Se-Ill;Kim, Yong-Se;Park, Chul-Woo;Shin, Sang Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.389-395
    • /
    • 2016
  • In this paper, vibration characteristics in terms of the airfoil cross-sectional shape was examined by using the EDISON co-rotational plane beam-transient analysis. Co-Rotational plane beam analysis is appropriate for large rotation and small strain. Assuming aircraft wing as a cantilevered beam, natural frequencies of each airfoil cross-sectional shape were estimated using VABS program and fast Fourier transformation(FFT). VABS conducts finite element analysis on the cross-section including the detailed geometry and material distribution to estimate the beam sectional properties. Under the same airfoil geometric configuration and material selection, variation of material induced difference in the deflection and natural frequencies. It was observed that variation of the natural frequency was dependent on variation of the airfoil shape and material.

Physical Test and Finite Element Analysis of Elastomer for Steel Rack Tube Forming (일체형 랙 튜브 성형을 위한 고 탄성체 물성시험과 유한요소 해석)

  • Woo, C.S.;Park, H.S.;Lee, G.A.
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Rubber-pad forming process for materials such as metal in which portions of the die which act upon the material is composed of a natural or synthetic rubber or elastomer material. This makes the rubber pad forming process relatively cheap and flexible, high accuracy for small product series in particular. In this study, we carried out the physical test and finite element analysis of elastomer such as natural rubber and urethane for steel rack rube forming. The non-linear property of elastomer which are described as strain energy function are important parameter to design and evaluate of elastomer component. These are determined by material tests which are uni-axial tension and bi-axial tension. This study is concerned with simulation and investigation of the significant parameters associated with this process.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database (적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF

Comparison and Estimation of Fretting Fatigue Damage Parameters for Aluminum Alloy A7075-T6 (A7075-T6 알루미늄 합금의 프레팅 피로 손상 파라미터 비교 평가)

  • Hwang, Dong-Hyeon;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1229-1235
    • /
    • 2011
  • Fatigue tests were conducted on the aluminum alloy, A7075-T6 to determine the most reliable fretting fatigue damage parameter. Specimens with grooves were used, so that either fretting fatigue crack at the pad/specimen interface or plain fatigue crack at the groove could be nucleated, depending on the pad pressure. Both the crack nucleation location and initial crack orientation were examined using optical microscopy, and the results were used to assess the reliability of the various fretting fatigue damage parameters that have been most commonly used in the literature. Finite element analysis was employed to obtain the stress and strain data of the specimen, which were needed to estimate the parameter values and the orientation of the critical plane. It was revealed that both the Fatemi.Socie and McDiarmid parameters, which assume shear-mode fatigue cracking, are the most reliable.

Disturbance Effects on the Stiffness of Normally Consolidated Clay (정규압밀 점성토의 교란에 따른 강성 변화)

  • Park, Hae-Yong;Shin, Hyun-Young;Oh, Myoung-Hak;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.69-79
    • /
    • 2011
  • Laboratory tests are generally used to determine the input parameters for the selected constitutive models controlling various stress and drainage conditions, but have disadvantages in that the tests are performed on the samples obtained from the bore hole which are prone to be disturbed by various factors such as the tube penetrations, sample preparations and storage. To overcome these disadvantages, it is necessary to understand the effect of disturbance on the stiffness of the sample, especially the normally consolidated clays which are generally considered as soft clays. Therefore, in this study triaxial tests are performed on the normally consolidated kaolinite to evaluate the sample disturbance effects on the stiffness and to determine the field representative input parameters. The stress path results show that the shear and coupling modulus degradation patterns with strain are affected seriously by the disturbance. However, the strengths of the normally consolidated kaolinite are little influenced by the disturbance.

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation (강성 저하된 적층복합판의 비선형 해석)

  • Han, Sung-Cheon;Park, Weon-Tae;Lee, Won-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2661-2669
    • /
    • 2010
  • In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.