• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.028 seconds

An Experimental Study of Creep Crack Initiation Behavior in 304 and 316 Stainless Steels (304스케인리스강과 316스테인리스강의 크립 균열 발생 거동에 관한 실험적 연구)

  • 최영환;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1193-1202
    • /
    • 1989
  • 본 논문에서는 발전소의 소재로 많이 쓰이고 있는 304 스테인리스강(앞으로는 304SS로 표기함)과 316스테인리스강(앞으로는 316SS로 표기함)의 크립 균열 발생 거동 을 각각 600.deg. C와 625.deg. C에서 조사한다. 이 온도는 발전소의 반응기(reactor)에 사용 되는 304SS와 316SS이 받는 온도이다. 즉 304SS와 316SS의 크립 균열 발생을 지배 하는 파괴 매개변수가 무엇인지가 크립 파괴 실험을 통하여 조사된다. 실험 결과는 이미 제안되어 있는 크립 균열 발생 모델에서 예측된 결과와 비교된다. 특히 304SS 와 316SS은 고온에서의 연성도가 변형률 속도에 따라 변하는 것으로 알려져 있다. 본 연구에서는 '변형률 속도에 따른 재료의 연성도의 변화에 근거한 균열 발생 모델' 을 제안하고, 그 모델에서 예측된 크립 발생 거동을 실험 결과와 비교한다.

SHPB기법을 사용한 고변형률 속도 하중하에서의 합성수지(PH162/ PB160)의 동적 변형 거동

  • 김성현;이억섭;이종원;황시원;조규상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.47-47
    • /
    • 2004
  • 충격하중을 받는 재료의 거동에 관한 연구는 공학의 넓은 분야에 깊은 관계를 가지고 있다. 특히 동적하중을 받는 경계조건 하에서 사용되는 구조물을 정밀하게 설계 제작하는 필요성이 고조됨에 따라 여러 재료들의 고변형률 속도로 변형될 경우에 대한 역학적인 성질이 중요한 과제로 떠오르고 있다. 구조물의 건전성과 신뢰성을 향상시키기 위해서는 구조물이 실제적으로 받는 여러 조건의 하중하에서의 실험적으로 정밀하게 획득된 정확하고, 완벽한 재료 물성치가 필요하다. (중략)

  • PDF

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Determination of True Stress-Strain Curves of Auto-body Plastics Using FEGM (FEGM을 이용한 자동차용 플라스틱의 진응력-변형률 선도 도출)

  • Park, C.H.;Kim, J.S.;Huh, H.;Ahn, C.N.;Choi, S.J
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.223-226
    • /
    • 2009
  • The plastics are widely utilized in the inside of vehicles. The dynamic tensile characteristics of auto-body plastics are important in a prediction of deformation mode of the plastic component which undergoes the high speed deformation during car crash. This paper is concerned with the dynamic tensile characteristics of the auto-body plastics at intermediate strain rates. Quasi-static tensile tests were carried out at the strain rate ranged from 0.001/sec to 0.01/sec using the static tensile machine(Instron 5583). Dynamic tensile tests were carried out at the strain rate ranged from 0.1/sec to 100/sec using the high speed material testing machine developed. Conventional extensometry method is no longer available for plastics, since the deformation of plastic is accompanied with localized deformation. In this paper, quasi-static and dynamic tensile tests were performed using ASTM IV standard specimens with grids and images from a high speed camera were analyzed for strain measurement. True stress-strain relations and the actual strain rates at each deformation step were obtained by processing load data and deformation images, assuming the plastics to deform uniformly in each grid.

  • PDF

Finite Element Analyses on the Behavior of Overall Strain Range using ABAQUS Code. (ABAQUS 코드를 이용한 전체 변형률 영역의 거동에 대한 유한요소해석)

  • 오세붕;전병곤;한성수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.55-62
    • /
    • 2002
  • 미소변형에서 대변형에 이르는 전체 변형률 영역의 구성모델을 ABAQUS 코드에 구현하였다. 구성모델은 비등방경화규칙에 근거한 전응력 개념의 탄소성 모델로 연약 점토나 풍화토에 적용하는 것이 가능하다. 사용된 정식화 및 알고리즘은 (1) Jaumann 응력속도를 이용한 대변형도 조건 정식화 (2) 내재적인 응력적분 (3) 일관된 접선계수를 포함하고 있다. 이를 통하여 대변형 해석을 정확하고 효율적으로 수행할 수 있었다. 예제를 통하여 새로운 구성모델과 ABAQUS 코드를 이용한 대변형 해석을 수행할 수 있음을 확인하였다. 특히 전체변형률 영역의 거동을 모델하고 범용 해석 프로그램을 이용한 비선형 대변형 해석에 적용하는 것이 가능하였다.

  • PDF

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Evaluation of Notch Effect on the Dynamic Strain Aging Behavior of Carbon Steel Piping Material (탄소강 배관 재료의 DSA 거동에 미치는 노치 영향 평가)

  • Lee, Sa-Yong;Kim, Jin-Weon;Kim, Hong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.275-282
    • /
    • 2012
  • In this study, tensile tests were performed using standard and notched-bar specimens under two different displacement rates and various temperatures, in order to investigate the effects of the stress and strain concentration at the notched section on the dynamic strain aging (DSA) behavior of carbon steel piping material. In addition, finite element simulations were conducted to evaluate quantitatively the stress and strain states for both types of specimen under uniaxial tensile loading. The results showed that serration and an increase in tensile strength, which are considered to be evidence of DSA in carbon steels, can be observed from tensile tests for notched-bar specimens. It was also found that the temperature region of DSA observed in the notched-bar specimens was higher than the DSA region observed in the standard tensile specimens tested under the same displacement rate. The results of finite element analysis showed that this behavior is associated with the high strain rate at the notched section, which is caused by the stress and strain concentration.

Study of Materials and Stress Ratios on Fatigue Crack Propagation Rate Using Parameter ΔA (.DELTA.A를 파라미터로 이용한 피로크랙전파속도에 미치는 재료 및 응력비의 영향에 대한 연구)

  • 박영철;오세욱;김광영;허정원;강정호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1373-1380
    • /
    • 1992
  • The local cyclic strain distribution near the crack tip has been investigated by the fine Dot Grid Strain Measurement Method, which had been suggested strain measurement method to resolve experimental difficulties by authors. It has been found that the magnitude of the local cyclic strain distribution(.DELTA..epsilon.$_{eq}$ )near a crack tip has been varied by the applied cyclic load level and material, but the shape of the local cyclic strain distribution near the crack tip has been experimentally scrarcely altered : that is .DELTA..epsilon.$_{eq}$ = .DELTA.A.f(.theta.). $r^{-1}$ . Consequently, the local cyclic strain field near the crack tip could be favorably characterized by a single parameter fatigue strain intensity factor .DELTA.A. In addition, with the viewpoint that .DELTA.A depends on material and load level, .DELTA.A has been applied to evaluate the fatigue crack propagation rate and usefulness of the result has been considered. As a result, it has been ascertained that .DELTA.A has been a useful parameter to evaluate the fatigue crack propagation rate.

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).