• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.03 seconds

A Generalized Viscoplasticity Theory Based on Overstress (과응력에 기초하여 일반화된 점소성 이론)

  • Ho, Kwang-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.1953-1960
    • /
    • 2002
  • The viscoplasticity theory based on overstress, one of the unified state variable theories, is generalized to model zero (no influence of loading rate) and negative (flow stress decreases with loading rate) as well as positive (flow stress increases with loading rate) rate sensitivity in a consistent way. On the basis of the long-time asymptotic solution the different types of rate sensitivity are classified with respect to an augmentation function that is introduced in the evolution law fur a state variable equilibrium stress. The theory predicts normal relaxation and creep behaviors even if unusual rate sensitivity is modeled. The constitutive model fir the behavior of a modified 9Cr-1 Mo steel at various temperatures is then compared with experimental data found in the literature.

Hydraulic Characteristics of Fluid-Granule Mixed Flow in Embankment of Noncohesive Materials Due to Overflow (越流에 의한 非粘着性 堤體에서의 流體-固體 混合流의 水理特性)

  • Kim, Jin-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.661-669
    • /
    • 1997
  • This paper presents a theoretical analysis for a velocity profile of fluid-granule mixed flow and a sheet erosion of an embankment having noncohesive materials due to overflow. The velocity profile were obtained using the stress-strain relationships based on a grain-inertia regime and an erosion depth was obtained using dynamic Coulomb criterion. Experiments were performed to compare with theoretical values and fairly good agreements were found. Theoretical results on velocity profiles, which can be applied to any type of velocity profiles in a fluid-granule mixed flow, showed a considerable improvement for the existing theories on a debris flow. for a design purpose, formulas and figure diagrams for obtaining a velocity profile, an erosion depth, an overflow depth and a granular discharge were proposed for given values of a flood discharge, particle properties and embankment scale.

  • PDF

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection (하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향)

  • Lee, Ki-Won;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.182-192
    • /
    • 2022
  • Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.

Characterization of the Material Properties of Sheet Metal for Auto-body at the High Strain Rate Considering the Pre-strain Effect (예비변형률 효과를 고려한 고변형률 속도에서의 차체용 강판의 물성 특성)

  • Kim, Seok-Bong;Lim, Ji-Ho;Huh, Hoon;Lim, Jong-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.204-210
    • /
    • 2004
  • Most auto-body members fabricated by the sheet metal forming process. During this process the thickness and material properties of the sheet metal are changed with the residual stress and plastic strain. This paper deals with the material properties of the sheet metal at the high strain rate considering the pre-strain effect. Specimens are selected from sheet metals for outer panels and inner members, such as SPCEN, SPRC45E, SPRC35R and EZNCD. The specimens are prepared with the pre-strain of 2, 5 and 10 % by tensile elongation in Instron 5583, which could be equivalent to the plastic strain in sheet metal forming. High speed tensile tests are then carried out with the pre-stained specimens at the strain rate of 1 to 100/sec. The experimental result informs that the material properties are noticeably influenced by the pre-strain when the yield stress of the specimens is moderate as SPCEN, SPRC35R and EZNCD. The result also demonstrates that the ultimate tensile strength as well as the yield stress is increased as the amount of the pre-strain is increased.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Dynamic Characteristics of Railway Plate Girder Bridges with Increase of Diesel Locomotive Speed (철도차량의 증속에 따른 판형교의 진동특성)

  • Cho, Eun Sang;Kim, Hyun Min;Hwang, Won Sup;Oh, Ji Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.769-782
    • /
    • 2006
  • As the ambient vibration test (AVT) of railway bridges has a limited range of speed, it has a limitation in examining the dynamic behavior of bridges accordingto speed. Thus, in order to analyze the correlation between the speed of a train passing over a bridge and the bridge's dynamic response, we conducted a speed-increasing experiment using a real diesel locomotive. To analyze the acceleration response characteristics, we attached seven vertical accelerometers at equal intervals throughout the entire section of the bridge except the supports, and one horizontal accelerometer to the middle span. Linear variable differential transformers (LVDT) were installed at the bridge's center in both vertical and horizontal directions to investigate the vertical and horizontal behaviors. The test train was statically loaded at the center and at the end of the bridge. And its speed was increased from 5 km/h to 90 km/h. With data obtained from the experiment, the vibration level was evaluated in each direction by the filtering frequency, and the level of horizontal vibration was examined in comparison with vertical vibration. The displacement and wheel load variation was analyzed by speed.

Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature (마그네슘 합금의 온간 동적재결정 구성방정식 최적화)

  • Cho, Yooney;Yoon, Jonghun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.

Effect of High Temperature on Mechanical Properties of Confined Concrete with Lateral Reinforcement (고온을 받은 횡방향 철근 구속 콘크리트의 역학적 특성 연구)

  • Choi, Kwang Ho;Lee, Joong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • The lateral reinforcements of concrete such as hoops and spiral bars are known to confine concrete to compensate the strength loss due to fire by reducing explosive spalling and improving the capacity of ductility. In this context, a study was conducted to investigate the residual mechanical properties of confined and unconfined concrete($f_{ck}$=60MPa) after a single thermal cycle at 300, 600, $800^{\circ}C$. The main parameters required to establish the stress-strain relationship are the peak stress, the elastic modulus, and the strain at peak stress. The knowledge of the residual mechanical properties of concrete is necessary whenever the thermally damaged structure is required to bear a significant share of the loads, even after a severe thermal accident. Based on the results obtained in this study, the residual stress of confined concrete under thermal damage is higher according to the level of confinement and the larger strain made it to have better ductility. The decreasing ratio of elastic modulus from the relationship of stress and strain was also smaller than that of unconfined concrete.

Creep Behavior of High Temperature Prestrain in Austenitic 25Cr-20Ni Stainless Steels (오스테나이트계 25Cr-20Ni 스테인리스강의 고온예변형에 의한 크리프 거동)

  • Park, In-Duck;Nam, Ki-Woo;Ahn, Seok-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.35-40
    • /
    • 2002
  • In the present study, we examined the influence of prestrain on creep strength of Class M alloy(STS310S) and Class A(STS310J1TB) alloys containing precipitates. Prestrain was given by prior creep at a higher stress than the following creep stresses. Creep behaviour before and after stress change and creep rate of pre-strianed specimens were compared with that of virgin specimens. Pre-straining produced the strain region where the strain rate was lower than that of a virgin specimen both for STS310J1TB and STS310S steels. The reason for this phenomenon was ascribable to the viscous motion of dislocations, the interaction between dislocations and precipitates in a STS310J1TB steel, and the interaction of dislocations with sub-boundaries in a STS310S steel which has the higher dislocation density and smaller subgrain size resulted from pre-straining at higher stress.

  • PDF