• Title/Summary/Keyword: 변형률 속도

Search Result 496, Processing Time 0.024 seconds

Hot Forging of Gas Turbine Components (가스터빈 부품 단조 기술)

  • 박노광;염종택;나영상;김인수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.06b
    • /
    • pp.51-64
    • /
    • 1999
  • 가스터빈에 사용되는 소재는 여타 금속소재에 비하여 고온 기계적 특성은 우수한 반면 상대적으로 단조성이 떨어지기 때문에, 금속소재의 단조성에 대한 이해와 단조 공정별 장단점을 파악하여 단조공정 설계에 반영하여야 한다. 가스터빈용 Ni합금의 경우 고온기계적 성질은 결정립 크기에 크게 의존한다. 결정립 크기는 기계적 성질에 직접적으로 영향을 미치는데, 동적재결정의 경우 초기 결정립크기, 변형률, 변형속도, 온도 뿐만 아니라 결정립계에 석출된 제2상에 의해서 크게 영향을 받기 때문에 이들 상의 고용온도를 파악하여 단조공정 설계에 반영하여야 한다. 유한요소법으로 변형률과 온도분포를 해석함으로써 단조품 내의 결정립 분포를 효과적으로 예측할 수 있다. 다단계 단조 경우, 최종 단조품의 결정립 크기는 단계별 단조 온도 및 변형률 배분 등에 따라 변하므로 이를 고려하여야 한다.

  • PDF

Effects of Various Stress Histories Including Creep Loading on Strength of a Geogrid (크리프 하중을 포함한 응력이력이 지오그리드 강도에 미치는 영향)

  • Park, Young-Kon;Fumio Tatsuoka
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.441-444
    • /
    • 2001
  • PVC로 코팅된 폴리에스테르 섬유로 만들어진 지오그리드 보강재에 대해 변형률을 달리하여 단일 또는 다단 크리프 하중단계를 포함한 하중을 연속적으로 작용시킴으로써 그 인장파괴강도를 검토하였다. 연구결과, 동일한 변형률에서 지오그리드의 인장파괴강도는 극한인장파괴가 되기 전에 작용된 웅력이력에 의해서 거의 영향을 받지 않는다. 또한 지오그리드의 설계파단강도는 적정한 변형률하에서 정의되어야 하며, 변형률 속도가 빠른 인장시험을 통해 지오그리드의 설계파단강도를 얻을 경우 이에 대한 보정이 필요할 것으로 사료된다.

  • PDF

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • Nam, Yong-Yun;Kim, Sa-Soo;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.77-86
    • /
    • 1997
  • The advanced development in many fields of engineering and science has caused much interests and demands for crashworthiness and non-linear dynamic transient analysis of structure response. Crash and impact problems have a dominant characteristic of large deformation with material plasticity for short time scales. The structural material shows strain rate-dependent behaviors in those cases. Conventional rate-independent constitutive equations used in the general purposed finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate-dependent constitutive equation for elastic-plastic material is developed. The plastic stretch rate is modeled based on slip model with dislocation velocity and its density so that there is neither yielding condition, nor loading conditions. Non-linear hardening rule is also introduced for finite strain. Material constants of present constitutive equation are determined by experimental data of mild steel, and the constitutive equation is applied to uniaxile tension loading.

  • PDF

Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass ($Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성)

  • Shin, Hyung-Seop;Jeong, Young-Jin;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

Crashworthy behaviour of cellular polymer under constant impact energy (동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구)

  • Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

Structural analysis of liquid rocket thrust chamber regenerative cooling channel using visco-plastic model (점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu Chul-Sung;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.151-155
    • /
    • 2006
  • Elastic-viscoplastic structural analysis is performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was also conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plsstic model was incorporated into finite element program, Marc, by means of user subroutine. The structural analysis results indicate that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under operating condition.

  • PDF

Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function (Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성)

  • Lee, Chang-Soo;Bae, Gi-Hyun;Kim, Seok-Bong;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.