• Title/Summary/Keyword: 변형률에너지

Search Result 281, Processing Time 0.029 seconds

Fabrication and characterization of piezoelectric wide band energy harvesters using low frequency vibrations (저주파 진동을 이용한 압전 구동 방식의 광대역 에너지 수확 소자 연구)

  • Cho, Hyunok;Halim, Miah A.;Park, Jae Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1227-1228
    • /
    • 2015
  • 본 연구에서는 기계적 충격 방식을 통한 주파수 상향방식을 이용하여 저주파 진동원으로부터 충분한 에너지를 수확할 수 있는 압전 구동 방식의 광대역 에너지 수확 소자를 제작하고 평가하였다. 유연한 외팔보의 진동으로 인한 기계적 충격은 압전 외팔보에 큰 두 번째 힘을 전달한다. 변형률이 커지고 주파수 상향방식을 사용한 결과로 출력 전력과 동작 주파수의 대역폭 또한 향상되었다. 제작된 에너지 수확소자의 질량체 비율은 ${\mu}=5.8$, 스토퍼의 거리는 d = 0.5 mm이며, 17 Hz의 주파수, $30k{\Omega}$의 최적 부하저항에서 $449{\mu}W$의 최대 피크 전력을 전달하였다. 또한 1 g로 가진하였을 때 11 Hz부터 28 Hz의 주파수 대역에서 동작이 가능하였고, 저주파수의 무작위 진동에서도 효율적으로 에너지 수확이 가능하다는 것을 입증하였다.

  • PDF

Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers (하이브리드 강섬유로 보강된 UHPC의 파괴거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • In this study, direct tension test for hybrid steel fiber reinforced ultra-high performance concrete (UHPC) containing two different steel fibers with a length of 16 and 19 mm was performed to investigate the fracture behavior of UHPC. Test results showed that crack strength and tensile strength, and fracture energy increased with increasing the fiber volume ratio. Based on the test results, the peak cohesive stress at the crack tip, tensile strength, and fracture energy depending on the fiber volume ratio were proposed. The proposed tensile strength of UHPC was suggested as a function of the fiber volume ratio and compressive strength. The peak cohesive stress at the crack tip and fracture energy were also proposed as a function of the tensile strength. The predicted values were relatively agree well with the test results. Thus, the proposed equations is expected to be applicable to UHPC with a compressive strength of 140~170 MPa and a fiber volume ratio of less than 2%.

An Optimal Multi-hop Transmission Scheme for Wireless Powered Communication Networks (무선전력 통신 네트워크에서 최적의 멀티홉 전송 방식)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1679-1685
    • /
    • 2022
  • In this paper, we propose an optimal multi-hop transmission scheme to maximize the end-to-end data rate from the source to the destination node in a wireless powered communication network. The frame structure for multi-hop transmission is presented to transmit multi-hop data while harvesting energy. Then, the transmission time of each node that maximizes the end-to-end transmission rate is determined through mathematical analysis in consideration of different harvested energy and link quality among nodes. We derive an optimization problem through system modeling of the considered wireless powered multi-hop transmission, and prove that there is a global optimal solution by verifying the convexity of this optimization problem. This analysis facilitates to find the optimal solution of the considered optimization problem. The proposed optimal multi-hop transmission scheme maximizes the end-to-end rate by allocating the transmission time for each node that equalizes the transmission rates of all links.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

An Criterion to Minimize FE Mesh-Dependency in Concrete Plate under Impact Loading (충격하중을 받는 판형콘크리트 구조물의 요소의존성 최소화 기준식)

  • Kwak, Hyo-Gyoung;Gang, Han-Gul;Park, Lee-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • In the context of an increasing need for safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling high strain rate conditions with these material models, mesh dependency in the used finite element(FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. This paper introduces an criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC(Holmquist Johnson Cook) model is examined to trace sensitivity to the used FE mesh size. To coincide with the purpose of the perforation simulation with a concrete plate under a projectile(bullet), the residual velocities of projectile after perforation are compared. The analytical results show that the variation of residual velocity with the used FE mesh size is quite reduced and accuracy of simulation results are improved by applying a unique failure strain value determined according to the proposed criterion.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF

Evaluation of Rutting Performance of Hot Mix Asphalt with Compaction Curve of Gyratory Compactor (선회다짐기 다짐곡선을 이용한 아스팔트 혼합물의 소성변형 특성 평가)

  • Park, Tae-Seong;Lee, Byung-Sik;Hyun, Seong-Cheol;Lee, Kwan-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • For the time being, HMA test specimen were prepared by Marshall Compaction Method for hot mix asphalt design and evaluated the mechanical properties of HMA at the specified air voids. Gyratory Compaction can simulate the field compaction process and measure the degree of compaction just after field compaction in laboratory. Superpave mix design with Gyratory compactor has been used for characterization of performance. The curve of gyratory compaction can be used to evaluate the permanent deformation potential of hot mix asphalt. In this paper, couple of indices for hot mix asphalt have been showed for hot mix asphalt in Korea. The major properties from gyratory compaction curve are compaction energy index and traffic compaction index. The specific guide line for the potential of hot mix asphalt has been proposed.

Fracture Energy and Displacement Field Characteristics of Particulate Reinforced Composites Using DIC Method (DIC법에 의한 입자강화 복합재료의 파괴에너지 및 변위장 특성)

  • Lee, Jeongwon;Na, Seonghyeon;Lee, Sangyoun;Park, Jaebeom;Jung, Gyoodong;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.15-20
    • /
    • 2017
  • In this study, the fracture energy and displacement fields characteristics of particulate reinforced composite is evaluated. Wedge splitting test was performed at various temperatures. Fracture energy of material is calculated at room temperature, $-40^{\circ}C$ and $-60^{\circ}C$. Displacement and strain fields of specimen surface were visualized by using digital image correlation. The surface displacement fields of the specimens were analyzed by mark tracking method using digital image correlation. The results showed that, the fracture energy was decreased as temperature decreased. The surface displacement fields at room temperature were similar to there at $-40^{\circ}C$. The surface displacement fields at $-60^{\circ}C$ was significantly reduced because of the brittle behavior. The strain fields of the specimen surface decreased as temperature decreased form room temperature to $-60^{\circ}C$.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.