• Title/Summary/Keyword: 변형거동 예측

Search Result 604, Processing Time 0.024 seconds

Creep Characteristics of Rocks and Concrete - A Comparison (암(岩)과 콘크리트의 Creep 특성에 대한 비교평가)

  • Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.33-56
    • /
    • 2001
  • It is well known fact that all rocks exhibit brittle properties and time depends strain properties (creep). An understanding of the time dependent deformation behaviour of rocks is believed to be essential in the field of civil and tunnelling. The rock and concrete creep in various forms of loading conditions and physical environment are reviewed. A comparison of creep behaviour between rocks and concrete is provided, in order to bring two existing relatively independent methods of predicting creep strain closer together. It was felt that the physical process in the creep of rocks would be similar to the process in creep of concrete. Since experiments and observations have shown that non-elastic (creep) mechanical behaviour of all crystalline solids (i.e., concrete, rocks, ceramics and refractories) and single materials have a common base. Also a comparison of the results for the accepted methods of estimating creep in rocks and concrete under - multiaxial loading was attempted to extend the knowledge of deformational characteristics of these two materials.

  • PDF

대형 강괴의 업셋팅공정시 기공압착에 관한 연구

  • Park, Chi-Yong;Jo, Jong-Rae;Yang, Dong-Yeol;Kim, Dong-Jin;Park, Il-Su
    • Transactions of Materials Processing
    • /
    • v.1 no.2
    • /
    • pp.20-31
    • /
    • 1992
  • 대형 강괴의 업셋팅 공정은 주조 조직의 방향성을 없애고, 코깅작업의 효율을 향상시키기 위한 충분한 단조비를 확보하기 위하여 필요한 공정이다. 공정에 영향을 주는 인자로써 상부 금형의 형상을 변화시켜 가면서 해석을 수행하였다. 극단적인 긴 파이프성 기공의 변형거동과 중심부에서 높이에 따른 원형기공의 닫힘거동 및 압하율과 기공폐쇄 정도를 관찰하였다. 충분한 단조비를 얻고 기공의 닫힘 및 압착을 이루기 위한 적절한 압셋팅 다이의 선택 및 업셋팅 공정을 예측하여 공정개선에 기여하고자 한다.

  • PDF

High-Temperature Deformation Behavior of a STS 321 Stainless Steel (STS 321 스테인리스강의 고온 변형 거동)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.51-59
    • /
    • 2016
  • STS 321 stainless steel is generally used for a material of high-temperature and high-pressure system including liquid rocket engine. The constitutive equation for flow stress has been suggested using thermal stress component and athermal stress component based on Kocks dislocation barrier model to predict 321 stainless steel's deformation behavior at elevated temperature. The suggested model predicted well the material deformation behaviors of 321 stainless steel at the wide temperature range from room temperature to $500^{\circ}C$.

터빈디스크합금 Waspaloy의 점소성변형거동 해석

  • 박노광;염종택;김인수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.35-35
    • /
    • 2000
  • 터빈의 핵심구동부품은 손상이 누적되어 파괴에 이를 경우 치명적인 결과를 야기할 수 있기 때문에, 부품사용조건에서의 소성변형과 이에 따른 손상 누적을 정확히 예측하고 평가함으로써 균열생성 시점을 정확히 파악하여야 할 필요가 있다. 현재 터빈디스크와 같이 고온 고응력에서 사용되고 있는 소재부품의 수명은 궁극적으로 크리프변형과 피로시험의 공동작용으로 결정되며, 재료특성모델링 시험에 있어서도 dwell time 피로시험을 통해 dwell time 효과를 점검하고 점소성 재료변형에 근거하여 피로에 의한 변형 현상을 설명할 수 있다.

  • PDF

Prediction of the Stress-Strain Curve of Materials under Uniaxial Compression by Using LSTM Recurrent Neural Network (LSTM 순환 신경망을 이용한 재료의 단축하중 하에서의 응력-변형률 곡선 예측 연구)

  • Byun, Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2018
  • LSTM (Long Short-Term Memory) algorithm which is a kind of recurrent neural network was used to establish a model to predict the stress-strain curve of an material under uniaxial compression. The model was established from the stress-strain data from uniaxial compression tests of silica-gypsum specimens. After training the model, it can predict the behavior of the material up to the failure state by using an early stage of stress-strain curve whose stress is very low. Because the LSTM neural network predict a value by using the previous state of data and proceed forward step by step, a higher error was found at the prediction of higher stress state due to the accumulation of error. However, this model generally predict the stress-strain curve with high accuracy. The accuracy of both LSTM and tangential prediction models increased with increased length of input data, while a difference in performance between them decreased as the amount of input data increased. LSTM model showed relatively superior performance to the tangential prediction when only few input data was given, which enhanced the necessity for application of the model.

The Behavior of Earth Retaining Walls Applied to Top-Down Construction Method Using Back Analysis (Top-Down 공법이 적용된 흙막이벽의 역해석을 이용한 거동분석)

  • Hong, Won-Pyo;Kang, Chul-Joong;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The behaviors of a diaphragm wall and a contiguous pile wall such as CIP(Case-in-place pile) and SCW(Soil-cement wall), applied to the top-down construction method, were analyzed using the SUNEX program, which is widely used to design earth retaining walls. Four types of earth pressures, as described by Rankine (1857), Terzaghi and Peck (1967), Tchbotarioff (1973), and Hong and Yun (1995a), were applied to the analysis program to predict the lateral displacement of walls. The results show that the displacements of an earth retaining walls vary with the applied earth pressure. The predicted lateral displacement based on Hong & Yun's (1995a) earth pressure is similar to the measured displacement. Therefore, the actual lateral displacement of an earth retaining wall, as applied to top-down construction method, can be accurately predicted by using an analysis program considering Hong and Yun's (1995a) earth pressure.

Confinement Effects of High Strength Reinforced Concrete Tied Columns (고강도 철근콘크리트 띠철근 기둥의 구속효과)

  • 신성우;한범석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.578-588
    • /
    • 2002
  • An experimental study was conducted to investigate the effectiveness of transverse reinforcement in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns(260$\times$260$\times$1200 mm) were tested. Effects of main variables such as the concrete compressive strength, the tie configuration, the transverse reinforcement ratio, the tie spacing, and the spatting of the concrete cover were considered. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse reinforcement that can provide sufficiently high lateral confinement pressure There is a consistent decrease in deformability of column specimen with increasing concrete strength. Test results were compared with the previous confinement model such as modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi model. The comparison indicates that many previous models for confined concrete overestimate or underestimate the ductility of confined concrete.

Shear Behavior Prediction of Reinforced Concrete Beams by Transformation Angle Truss Modul (변환각 트러스 모델에 의한 철근콘크리트 보의 전단거동 예측에 관한 연구)

  • 김상우;이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.130-138
    • /
    • 2001
  • This paper presents on the shear behavior prediction of reinforced concrete beams using Transformation Angle Truss Model (TATM). The TATM can evaluate the stress-strain relationships for cracked concrete by transforming stresses and strains for principal plane into those over the crack surfaces. This proposed analytical method simplifies the Fixed Angle Softened Truss Model (FA-STM) and removes the limitation of applicability of the FA-STM. The shear.strength and strain of reinforced concrete beams are predicted by using the TATM. For the verification of proposed method, experimental results of reinforced concrete beams were compared with theoretical results by the TATM, FA-STM and Rotating Angle Softened Truss Model (RA-STM).

Experimental and Analytical Study of the Dynamic Behavior of a Polyurethane Spring Restoring Disk Bearing (폴리우레탄 스프링 복원형 디스크 받침의 동적거동에 대한 실험 및 해석적 연구)

  • Park, Hyung-Ghee;Lee, You-In;Jung, Dae-Yu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.61-69
    • /
    • 2011
  • In this paper, the factors affecting the dynamic characteristics of a polyurethane spring restoring disk bearing are analysed to predict the dynamic behavior of the bearing. The prediction results and the test results are compared. The Young's modulus of the polyurethane spring, which varies according to strain of spring and the friction coefficient, of PTFE (PolyTetraFluoroEthylene), which varies according to the velocity and pressure of PTFE, are considered as the factors influencing the dynamic characteristics. W-PTFE virgin products are used and polyurethane springs are produced for the tests. The equation related to changing the friction coefficient and the modulus of elasticity are obtained through an inverse estimation of the test results. The estimation results, considering the factors affecting the dynamic characteristics, simulate the test results more appropriately than the estimation without the consideration of those factors.

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.