• Title/Summary/Keyword: 변위-기반 내진설계

Search Result 44, Processing Time 0.023 seconds

Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls (부산 및 인천항만 안벽구조물의 지진취약도 예측)

  • Kim, Young Jin;Kim, Dong Hyawn;Lee, Gee Nam;Park, Woo Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.412-421
    • /
    • 2013
  • Nowadays, small and medium-sized earthquakes occur frequently in the west coast of Korea. The earthquake induced damages on the harbor structure such as quay wall possibly make a severe impact on national economy. Therefore, not only a seismic design for the structures but warning system for seismic damage right after the occurrence of earthquake should be developed. In this study, seismic fragility analysis was performed to be given to earthquake damage prediction system for quay wall structures in Busan and Incheon harbor. Four types of structures such as pier-type, caisson type, counterfort type, block-type were analyzed and fragility curves of functional performance level and collapse prevention level based on displacement criteria were found. Regression analyses by using the results of the two ports were done for possible use in other port structures.

A proposal of simple evaluation on the seismic performance of tunnel lining (터널 라이닝의 내진성능 간편 평가법 제안)

  • Ahn, Jae-Kwang;Byun, Yoseph;Lee, Gyuphil;Lee, Seongwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.361-374
    • /
    • 2018
  • The country has built and is operating IT-based integrated management system for efficient management of national highway tunnels used publicly these days. Since this system doesn't include the management function on earthquakes, it is impossible to promptly respond to earthquakes and to select the sections requiring seismic reinforcement. Tunnels designed and constructed after 1999 have been subjected to seismic design for an earthquake with a return period 1000 years. Therefore, it is necessary to evaluate the stability of structures in case of earthquakes more than this. Since it takes a lot of time to perform the stability evaluation on various earthquake magnitudes, a method that can easily evaluate earthquakes is needed. In this paper, the empirical simplification method that can easily evaluate the earthquake was proposed. For this, the study calculated ground displacement by conducting one-dimensional ground response analysis, and examined the safety of tunnels in the event of occurrence of an earthquake using two means of response displacement method (analytics and numerical analysis).

Development of Optimal Performance based Seismic Design Method using Displacement Coefficient Method (변위계수법을 활용한 최적 내진 성능기반 설계기법 개발)

  • 이현국;권윤한;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.103-110
    • /
    • 2004
  • Recently, performance based seismic design (PBSD) methods in numerous forms have been suggested and widely studied as a new concept of seismic design. The PBDSs are far from being practical due to complexity of algorithms resided in the design philosophy In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this paper, strength design criteria, stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 9-story two-dimensional steel frame structures.

  • PDF

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

A Simple Seismic Vulnerability Sorting Method for Electric Power Utility Tunnels (전력구의 간편 지진취약도 선별법)

  • Kang, Choonghyun;Huh, Jungwon;Park, Inn-Joon;Hwang, Kyeong Min;Jang, Jung Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.110-118
    • /
    • 2018
  • Due to recent earthquakes, there is a growing awareness that Korea is not a safe zone for earthquakes any more. Therefore, the review of various aspects of the seismic safety of the infrastructures are being carried out. Because of the characteristics of the underground structure buried in the ground, the electric power utility tunnels must be considered not only for the inertia and load capacity of the structure itself but also the characteristics of the surrounding soils. An extensive and accurate numerical analysis is inevitably required in order to consider the interaction with the ground, but it is difficult to apply the soil-structure interaction analyses, which generally requires high cost and extensive time, to all electric power utility tunnel structures. In this study, the major design variables including soil characteristics are considered as independent variables, and the seismic safety factor, which is the result of the numerical analysis, is considered as a dependent variable. Thus, a method is proposed to select vulnerable electric power utility tunnels with low seismic safety factor while excluding costly and time-consuming numerical analyses through the direct correlation analysis between independent and dependent variables. Equations of boundary limits were derived based on the distribution of the seismic safety factor and the cover depth and rebar amounts with high correlation relationship. Consequently, a very efficient and simple approach is proposed to select vulnerable electric power utility tunnels without intensive numerical analyses. Among the 108 electric power utility tunnels that were investigated in this paper, 30% were screened as fragile structures, and it is confirmed that the screening method is valid by checking the safety factors of the fragile structure. The approach is relatively very simple to use and easy to expand, and can be conveniently applied to additional data to be obtained in the future.

Hybrid Control Strategies for Seismic Protection of Benchmark Cable-Stayed Bridges (지진하중을 받는 벤치마크 사장교를 위한 복합제어 기법)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Lee, Chong-Heon;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.435-442
    • /
    • 2002
  • 본 연구에서는 사장교의 제어기법 개발을 위한 구조물로 제공되는 벤치마크(benchmark) 사장교에 대해 복합제어 기법을 적용하였다. 이 벤치마크 문제에서는 2003년 완공 예정으로 미국 Missouri 주에 건설 중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고, Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계단계에서부터 내진 문제에 대하여 자세하게 고려되었다. 상세 설계도면을 기반으로 하여 교량의 전체적인 거동 특성을 정확하게 나타낼 수 있는 3차원 모델이 만들어졌고, 사장교의 제어 성능에 관련된 평가 기준이 수립되었다. 본 연구에서 사용한 복합제어 기법이란 지진하중으로 인해 구조물에 발생되는 하중을 줄이기 위한 수동제어 기법과 상판변위와 같은 구조물의 응답을 추가적으로 제어하기 위한 능동제어 기법이 결합된 제어방법이다. 수동제어 장치로는 현재 일반적으로 많이 사용되고 있는 납고무받침(lead rubber bearing)을 사용하였다. 능동제어 방법에는 $H_2$/LQG 제어 알고리듬(algorithm)을 사용하였다. 수치해석 결과 제안방법의 성능은 수동제어 방법에 비해 매우 효과적이며, 능동제어 방법에 비해서는 좀더 좋은 제어성능을 나타내었다. 또한, 복합제어 방법은 수동제어 부분 때문에 능동제어 방법에 비해 좀더 신뢰할 수 있는 제어 방법이다. 따라서 제안된 제어방법은 지진하중을 받는 사장교의 제어를 위해 효과적으로 사용될 수 있다.

  • PDF

Analysis of behavior a River Levee based on the Earthquake Scenario (지진 시나리오 기반 하천 제방의 거동 변화 분석)

  • Kim, Jin-Man;Jin, Yoon-Hwa;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.481-487
    • /
    • 2020
  • This study examined the behavior change of river levees during an earthquake by numerical analysis. Unlike conventional research using artificial earthquake waves, earthquake analysis was performed using real earthquake waves. The behavior of a river levee before and after an earthquake was compared and analyzed quantitatively. Studies show that the river levee has a safety factor of approximately 28.5% due to an earthquake. On the other hand, the minimum standard safety factor is satisfied. Vertical effective stress has decreased by 81.8% due to excess pore-water pressure generated by the earthquake. In addition, liquefaction occurs in most of the foundation soil. An examination of the stress-displacement behavior due to the earthquake revealed a large amount of settlement in the backfill layer. Most of the foundation soil yielded. Therefore, the target river levee is quite vulnerable to earthquakes. Through the results of this study, the necessity of refreshing the seismic design standards for river levees is required. This study can be used as basic data for estimating the approximate damage level and vulnerable areas.

3-Dimentional numerical study on dynamic behavior of connection between vertical shaft and tunnel under earthquake loading (3차원 수치해석을 이용한 지진 시 수직구-터널 접속부 동적 거동 분석)

  • Kim, Jung-Tae;Cho, Gye-Chun;Kang, Seok-Jun;Kim, Ki Jung;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.887-897
    • /
    • 2018
  • 3D time history analysis was performed on vertical shaft-tunnel connection to provide insight into the dynamic stress-strain behavior of the connection considering the effects of soil layers, periodic characteristics and wave direction of earthquakes. MIDAS GTS NX based on FEM (Finite Element Method) was used for this study. From this study, it is revealed that the maximum displacement occurred at the upper part of the connection when the long period seismic waves propagate through the tunnel direction in soft ground. Also, stress concentration occurs due to different behaviors of vertical shaft and tunnel, and the stress concentration could be influence for safety on the connection. The results of this study could be useful for the seismic performance design of vertical shaft-tunnel connection.

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

Seismic Fragility Evaluation of Chimney Structure in Power Plant by Finite Element Analysis (유한요소 해석을 통한 발전소 연돌 구조물의 지진취약도 분석)

  • Kwon, Gyu-Bin;Kim, Jin-Sup;Kwon, Min-Ho;Park, Kwan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.276-284
    • /
    • 2019
  • Seismic research on bridges, dams and nuclear power plants, which are infrastructure in Korea, has been carried out since early on, but in the case of structures in thermal power plants, research is insufficient. In this study, a total of 192 dynamic analyzes were performed for 16 actual seismic waves and 12 PGAs. As a result, the probability of failure increased as the PGA value increased for each applied seismic wave, but it was different for each seismic wave. As a result, at 0.22G, the ratio of the compressive limit reached to the limit state was 25% and the ratio of the relative displacement reached the limit state was 13%. So, the probability of collapse due to compressive failure Is higher. Therefore, the fragility curve of the chimney which is the subject of this study can be used as a quantitative basis to determine the limit state of the target structure when an earthquake occurs and to be used for the safety design of the thermal power plants.