• Title/Summary/Keyword: 변위 성능

Search Result 1,001, Processing Time 0.023 seconds

Displacement Response of Degrading Systems to Near-Fault Ground Motions (근접-단층 지진에 대한 저하시스템의 변위응답)

  • 송종걸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • 단층에 근접한 지진동에 대하여 성능이 저하되는 단자유도계의 변위응답에 대하여 연구하였다 5% 의 감쇠비를 갖는 세단계의 성능저하시스템을 5개의 단층에 근접한 지진동에 대하여 해석하였다 해석결과로부터 성능저하시스템의 비탄성 변위응답은 비저하시스템에 비하여 큰 값을 나타냄을 알 수 있었다 또한 성능저하 특성이 증가할수록 변위응답은 커지는 경향이 있다 이러한 변위증폭은 구조물의 고유주기 강도와 성능저하특성에 영향을 받으며 짧은 주기영역에서는 큰 값을 나타내며 긴 주기영역에서는 변위증폭이 거의 발생하지 않는다 단층에 근접한 각각의 지진동에 대한 변위증폭의 최대값은 1초 보다 작은 주기영역에서 비저하시스템의 4배 정도이다 변위증폭계수의 평균값은 짧은 주기영역에서는 2의 값을 가지면 구조물의 고유주기가 길어질수록 1에 수렴해 감을 알 수 있었다.

  • PDF

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Seismic Performance Improved Design of Reinforced Concrete Columns Strengthened by Steel Jackets Using Displacement-based Design (스틸재킷 보강 철근콘크리트 기둥의 변위기반 내진 성능 개선 설계 방법)

  • Jung, In-Kju;Park, Moon-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, a procedure of performance-based design for the seismic retrofit of reinforced concrete columns strengthened by steel jackets has been presented. In order to predict the target displacement of retrofitted columns, a nonlinear analysis of reinforced concrete columns retrofitted with steel jackets has been developed based on a segmental model with the fiber cross-sectional approach. The seismic displacement level of retrofitted columns is estimated both by the direct displacement-based design method and by the displacement coefficient method. In examples of seismic retrofitted columns, the current seismic retrofit procedure gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

Displacement Based Seismic Performance Improved Design of RC Column Retrofitted Steel Jacket (변위기반 설계법에 의한 RC 기둥의 Steel Jacket 보강 내진성능개선 설계법)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Soon-Eung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.49-57
    • /
    • 2010
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. To predict the target displacement of retrofitted columns, a nonlinear analysis model of reinforced concrete columns has been developed to be based on the nonlinear fiber cross-sectional and segmental analysis model, and the seismic displacement level of retrofitted columns is estimated by two procedures, the direct displacement-based design method and the displacement coefficient method. In examples of seismic retrofit design, the current seismic improved design method gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

  • PDF

Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames (철골모멘트골조의 내진성능향상을 위한 층간변위조절기법)

  • Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.707-714
    • /
    • 2011
  • The inter-story drift ratio is used to evaluate the damage of buildings by the earthquake. This is known that as the inter-story drift ratio decreases, the seismic damage decreases. Although to reduce the inter-story drift ratio is the important issue in the seismic design, no practical inter-story drift design method has bean developed. This study presents an optimal inter-story drift design method to improve the seismic performance of the steel moment frames using the resizing algorithm. The objective function of the proposed method is to minimize the differences of the inter-story drift ratios so that the inter-story drift ratios of the building could be distributed evenly and be reduced. Because this method redesigns the sectional properties of structural members base on the displacement participation factor calculated by the unit-load method, this can improve the seismic performance of the structure without the iterative structural analysis. The efficiency of this algorithm was demonstrated by the application to steel moment frames.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

Performance analysis of the optical displacement sensor for accurate in-plane motion measurement (정확한 평면운동 측정을 위한 광 변위센서의 성능분석)

  • Kang, Hoon;Lee, Hunseok;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.639-646
    • /
    • 2016
  • In this study, the contactless measurement method with a optical displacement sensor(ODS, ADNS 9500) was proposed to overcome flaws in a rotary encoder based measurement under particular circumstances, such as a slippage and a case of little rotational inertia. The performance tests of the optical displacement sensor using data acquisition board and National Instruments's LabVIEW program were performed to accomplish accurate displacement measurements and the performance characteristics according to measurement direction, speed, acceleration, height and surface types were discovered through the repetitive tests. The experimental results indicate that, in order to get an accurate in-plane motion, the height(distance between the ODS and the target surface) has to be maintained at the range of 2.4 mm to 3.2 mm and the sensitivity(resolution) should be modified and applied to the formulae for displacement calculation, considering its measurement direction, speed and surface type.

Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures (비대칭 벽식 구조지 변위기초 내진성능평가 및 보강)

  • Hong, Sung-Gul;Ha, Tae-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.23-32
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic leading may cause the stress and/or deformation concentration, which arouse the failure of the structure in an unexpected manner. This study suggests D-R relationship which shows the overall displacement and rotation of the system based on the ultimate displacement capacity of the each lateral load resistant member. Using the suggested D-R relationship and displacement spectrum, the seismic assessment is conducted and verified in comparison with the time history analysis result. Multi-level seismic assessment Is considered which takes multiple seismic hazard levels and respective performance levels into account. Finally, based on the seismic assessment result, seismic rehabilitation process is presented. In this research, two rehabilitation methods are considered. One is done by means of stiffening/strengthening the seismic resistant members, and the other is based on the member ductility. Especially, in the first method, to optimize the rehabilitation result, the rehabilitation problem is modeled as an optimization problem, and solved using BFGS quasi-Newton optimization method.

Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges (다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교)

  • Choi, Eun Soo;Kim, Lee Hyeon;Park, Joo Nam;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.587-597
    • /
    • 2007
  • Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.