• Title/Summary/Keyword: 변수

Search Result 31,140, Processing Time 0.081 seconds

An Extraction Algorithm of Dynamic Program Slice Using Variable-Variable Relationships (변수-변수 관련성을 이용한 동적 프로그램 조각 추출 알고리즘)

  • Kim, Tae-Hee;Kim, Byung-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2874-2883
    • /
    • 1998
  • 프로그램 조각화 기법은 프로그램을 이해하기 쉬운 조각 단위로 분해하여 소프트웨어 개발자나 유지보수다사 프로그램을 쉽게 이해할 수 있도록 지원한는 방법이다. 본 논문ㅇ세는 변수-변수 관련성을 이용하여 정확하고 수행 가능한 프로그램 조각을 추출하는 동적 프로그램 조각 추축 알고리즘을 제안한다. 각 문장에서 변경되는 변수와 참조되는 변수로 나누어서 변수 집합을 계산하고, 선언부에 있는 문장에 대해 변수-변수 관련성을 계산한다. 변수-변수 관련성을 계산할 때는 선언부의 변수가 다른 문장에서 변경되는 변수로 사용된 경우와 참조되는 변수로 사용된 경우를 별도로 조사하여 변경되는 변수 집합은 무조건 관련 집합에 포함시키고, 문장에서 참조되는 변수들은 문장들을 다시 비교하여 기준 변수와 관련된 문장만을 추출하여 관련 집합에 포함시킨다. 제안한 알고리즘은 C 언어를 대상으로 실험한 결과 정확하고 수행 가능한 동적 조각을 추출하였고, 기존의 방법들보다 관련 문자을 찾기 위한 문장의 비교횟수를 평균 42%까지 감소시켰다. 기준 변수가 많을수록 기준 변수와 관련이 없는 변수가 많을수록 문장의 비교 횟수가 현저하게 감소하였다.

  • PDF

회귀나무에서 변수선택 편의에 관한 연구

  • Kim, Min-Ho;Kim, Jin-Heum
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.263-268
    • /
    • 2003
  • Breiman, Friedman, Olshen and Stone(1984)의 전체탐색법에 의한 회귀나무는 상대적으로 많은 분리가 가능한 변수로 분리기준이 정해지는 편의 현상을 갖고 있다. 본 연구에서는 이런 문제점을 해결할 수 있는 알고리즘을 제안하여 변수선택편의가 없는 회귀나무를 만들고자 한다. 제안하는 알고리즘은 노드의 분리변수를 선택하는 단계와 그 선택된 변수에 의해 이진분리를 위한 분리점을 찾는 단계로 구성되어 있다. 예측변수 중에서 목표변수와 가장 밀접하게 연관된 예측변수는 예측변수의 자료의 종류에 따라 스피어만의 순위상관계수에 의한 검정 혹은 크루스칼-왈리스의 통계량에 의한 검정을 수행하여 가장 통계적으로 유의한 변수로 선택하였고, 선택된 변수에만 Breiman et al.(1984)의 전체선택법을 적용하여 분리점을 결정하였다. 모의실험을 통해 변수선택편의, 변수선택력 , 그리고 평균제곱오차 측면에서 Breiman et al. (1984)의 CART(Classification and Regression Trees)와 제안한 알고리즘을 서로 비교하였다. 또한, 두 알고리즘을 실제 자료에 적용하여 효율을 서로 비교하였다.

  • PDF

Direct Method of Parameter Estimation for Neyman-Scott Rectangular Pulse Model (Neyman-Scott Rectangular Pulse 모형의 직접적인 매개변수 추정)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.203-207
    • /
    • 2009
  • Neyman-Scott Rectangular Pulse 모형(NSRPM)은 Poisson process에 기초를 둔 모형으로 수자원분야에서는 강수자료를 생성하는데 널리 쓰이고 있다. NSRPM을 구축하기 위해서는 기존에 관측된 강수 자료를 이용하여 NSRPM의 매개변수를 추정하여야 한다. NSRPM의 매개변수를 추정 시 강수자료의 모멘트와 매개변수로 구성된 모멘트식을 비교하여 매개변수를 추정한다. 기존에 사용된 모멘트를 이용한 NSRPM의 매개변수 추정방법의 경우 매개변수로 구성된 모멘트식을 증명하여야지만 NSRPM의 매개변수를 추정할 수 있다. 또한 증명된 모멘트식이 없는 모멘트 값의 경우 매개변수 추정 시 사용하지 못하는 단점이 있다. 이런 한계점으로 인하여 NSRPM 의 수정 및 추정이 어려워 NSRPM은 널리 사용되지 못하고 있다. 본 연구에서는 매개변수 추정방법의 따른 한계점을 극복하고자 직접적인 매개변수 추정방법을 제안하였다. 직접적인 매개변수 추정방법은 모멘트 식을 이용하지 않고 생성된 자료를 이용하여 직접적으로 매개변수를 추정하는 방법이다. 본 연구의 대상지점은 금강유역의 대전으로 선정하였으며, 사용된 자료는 기상청에서 운영하는 대전 지상관측소 강수자료를 사용하였다. 총 39년의 자료를 이용하여 각 방법을 이용하여 매개변수를 추정하였다. 실험결과 직접적인 추정방법이 기존 매개변수 추정방법보다 더 정확한 매개변수를 추정하는 것을 확인 할 수 있었다.

  • PDF

Causal Instrumental Variables, Intervention, and Causal Transitivity (인과 도구 변수와 조종자 그리고 인과 이행성의 관계)

  • Kim, Joonsung
    • Korean Journal of Logic
    • /
    • v.22 no.1
    • /
    • pp.183-209
    • /
    • 2019
  • In this paper, I first examine Reiss'(2005) arguments for the causal instrumental variable. Second, I argue that the conditions for causal transitivity I consider meet what the causal instrumental variables and the interveners of the manipulation theory of causation are intended to hold. Reiss shows that two conditions for instrumental variables are not sufficient for causal significance of independent variables for dependent variables. Reiss articulates and reformulates the conditions for instrumental variables in terms of the conditions on causality, while naming his instrumental variables as causal instrumental variables. Reiss argues that the causal instrumental variables are similar to the interveners of the manipulation, or intervention theory of causation. He further argues that the causal instrumental variables do a better job the interveners do. I argue that the conditions for causal transitivity I consider meet the goal the conditions for the causal instrumental variables and the conditions for the interveners both are intended to achieve.

Parameter Estimation for Multiple Linear Regession Model by OLS and Stepwise (OLS 및 변수선택법에 의한 다중선형회귀모형 매개변수 산정)

  • Kim, Kyung-Tak;Kim, Joo-Hun;Park, Jung-Sool
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1161-1165
    • /
    • 2006
  • 본 연구는 OLS 및 변수선택법에 의해 통계학적 모형의 매개변수를 산정하여 모형의 적용성을 입증하고 하천 주요지점에 대한 홍수위 예측을 통해 홍수예보 및 예측 업무에 기여코자하는데 연구목적이 있다. 다중선형회귀모형을 구성하기 위한 독립변수는 예보지점의 수위/유출량 자료와 상류지점의 수위/유출량 자료, 그리고 유역의 선행 평균강우량 등의 자료를 독립변수로 하여 통계학적 홍수예측을 위한 다중선형 회귀모형을 각각 구성하여 적합성 여부를 판단하였다. 매개변수 산정은 OLS(Ordinary least square root method)와 변수선택(Stepwise)방법에 의해 산정하였으며, 중랑천 유역의 2002년부터 2005년까지의 수문사상 16개를 선정하여 모형에 적용한 결과 두 매개변수 산정방법 모두 30분에서 90분 예측은 상대적으로 정확한 결과를 나타내었으며, OLS 및 변수선택법에 의한 매개변수 산정결과 변수선택법에 의한 방법이 OLS 방법보다는 상관성이나 효율지수면에서 조금 더 정확한 값을 나타내고 있으나 독립변수의 일관성을 감안한다면 변수선택법보다는 OLS방법에 의한 매개변수 산정이 타당할 것으로 사료된다. 기존의 홍수예보 업무에 활용되고 있는 수문학적 홍수예측 모형인 저류함수법의 여러 매개변수 조정에 의한 홍수위 예측 방법보다는 비교적 간단한 통계적 방법에 의한 홍수위 예측 방법으로 홍수예보의 선행시간 확보가 필수적인 중랑천과 같이 유역면적이 작은 중소하천에서의 홍수예보 업무에 효과적으로 이용 가능할 것으로 사료된다.

  • PDF

A Deep Learning Model for Identifying The Time Lag Between Explanatory Variables and Response Variable in Regression Analysis (회귀분석에서 설명변수와 반응변수 간의 시차를 파악하는 딥러닝 모델)

  • Kim, Chaehyeon;Ryoo, Euirim;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.868-871
    • /
    • 2021
  • 기후, 경영, 경제 등 여러 분야의 회귀분석에서 설명변수가 반응변수에 일정 시차를 두고 영향을 미치는 경우들이 많다. 하지만 지금까지 대부분의 회귀분석은 설명변수가 반응변수에 즉각적으로 영향을 미치는 경우만을 가정하고 있으며, 설명변수와 반응변수 간에 존재하는 시차를 탐색하는 연구는 거의 이루어지지 않았다. 그러나 보다 정확한 회귀분석을 위해서는 설명변수와 반응변수 간에 존재하는 시차를 파악하는 것이 중요하다. 본 논문은 회귀분석 데이터가 주어졌을 때 설명변수와 반응변수 간에 존재하는 시차를 파악하는 딥러닝 모델을 제안한다. 제안하는 딥러닝 모델은 설명변수의 과거 값들 중 어떤 값이 현재 반응변수에 가장 큰 영향을 미치는지를 노드 간 가중치로 표현하고, 회귀모델의 오차를 최소화하는 가중치를 탐색한다. 훈련이 끝나면 이 가중치들을 사용하여 각 설명변수와 반응변수 간에 존재하는 시차를 파악한다. 실험을 통해 제안 방법은 시차를 고려하지 않는 기존 회귀모델에 비해 시차까지 고려함으로써 오차가 1/100 수준에 불과한 더 정확한 회귀모델을 찾을 수 있음을 확인하였다.

Development of Variable Selection Technique using Stepwise Regression and Data Envelopment Analysis (단계적 회귀법과 자료봉합분석을 이용한 변수선택기법의 개발)

  • Jeong, Min-Eui;Yu, Song-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.8
    • /
    • pp.598-604
    • /
    • 2014
  • In this paper, we develop stepwise regression data envelopment model to select important variables. We formulate null hypothesis to understand the importance of each variable and use Kruskal-Wallis test for this purpose. If the Kruskal-Wallis test does reject the null hypothesis this will imply there is significant fluctuation in the efficiency score relative to base model. And therefore we have to further check the pair of variables that causes the fluctuation in order to determine its importance using Conover-Inman test. The proposed models helps understand the extent of misclassification decision making units as efficient/inefficient when variables are retained or discarded alongside provides useful managerial prescription to make improvement strategies.

Application of Control Variable with Routing Probability to Queueing Network Simulation (대기행렬 네트워크 시뮬레이션에서 분지확률 통제변수의 응용)

  • Kwon, Chi-Myung;Lim, Sang-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.71-78
    • /
    • 2012
  • This research discusses the application of the control variables to achieve a more precise estimation for the target response in queueing network simulation. The efficiency of control variable method in estimating the response depends upon how we choose a set of control variables strongly correlated with the response and how we construct a function of selected control variables. For a class of queuing network simulations, the random variables that drive the simulation are basically the service-time and routing probability random variables. Most of applications of control variable method focus on utilization of the service time random variables for constructing a controlled estimator. This research attempts to suggest a controlled estimator which uses these two kinds of random variables and explore the efficiency of these estimators in estimating the reponses for computer network system. Simulation experiments on this model show the promising results for application of routing probability control variables. We consider the applications of the routing probability control variables to various simulation models and combined control variables using information of service time and routing probability together in constructing a control variable as future researches.

Efficient variable selection method using conditional mutual information (조건부 상호정보를 이용한 분류분석에서의 변수선택)

  • Ahn, Chi Kyung;Kim, Donguk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1079-1094
    • /
    • 2014
  • In this paper, we study efficient gene selection methods by using conditional mutual information. We suggest gene selection methods using conditional mutual information based on semiparametric methods utilizing multivariate normal distribution and Edgeworth approximation. We compare our suggested methods with other methods such as mutual information filter, SVM-RFE, Cai et al. (2009)'s gene selection (MIGS-original) in SVM classification. By these experiments, we show that gene selection methods using conditional mutual information based on semiparametric methods have better performance than mutual information filter. Furthermore, we show that they take far less computing time than Cai et al. (2009)'s gene selection but have similar performance.

Demographic and Attitudinal Factors that Modify Annoyance from Aircraft Noise (항공기 소음 성가심 반응에 영향을 미치는 변수에 관한 연구(II) - 김포공항 주변 거주민을 대상으로 -)

  • Son, Jin-Hee;Lee, Kun;Chang, Seo-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1366-1370
    • /
    • 2007
  • For the purpose of finding how the annoyance response to aircraft noise is affected by non-noise variables, the questionnaire survey is conducted around the Gimpo International Airport in Seoul, Korea. The non-noise variables used in this research are divided into two categories; demographic and attitudinal variables. The result of the survey suggests that aircraft noise annoyance is not affected to an important extent by other noise sources(e.g., road traffic noise and community noise etc.) and the demographic variables (sex, age, education, occupation, dwelling type and length of residence). It has been found that it is affected to an important extent by the attitudinal variables such as complaints.