Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.1476-1480
/
2005
본 연구에서는 매개변수를 추정하는 방법 중 하나인 역해석을 이용하여 강변여과 지역의 투수량계수를 추정하였다. 최적화 기법으로 BFGS(Broyden-Fletcher-Goldfarb-Shanno)를, 정해석 프로그램으로 지하수위와 오염물 거동을 2차원적으로 모의할 수 있는 MOC(Method of Characteristics)을 이용하여 포트란으로 구성된 새로운 프로그램을 개발하였으며 프로그램의 적용성을 검증하기 위해 실제 강변여과를 하고 있는 경남 창원시 대산면의 8개월간 관측 지하수위를 이용하여 그 지역의 투수량계수를 추정하였다.
Proceedings of the Korean Statistical Society Conference
/
2001.11a
/
pp.63-68
/
2001
조사과정에서 필연적으로 발생하는 무응답을 보정하기 위해 보조정보를 사용한다. 이 때, 이용 가능한 보조정보의 차원이 크면, 계산과정에서 많은 시간이 소요되며 데이터를 다루기가 매우 어렵다. 또한 추정량의 분산이 보조정보의 차원에 의존하기 때문에 과소추정의 문제가 발생한다. 이러한 문제를 해결하기 위해 무응답 보정에서 적절한 보조정보의 선택 방법을 제안하였고, 이에 대한 효율성을 모의실험을 통해 살펴보았다.
Chung, Sang Young;Yim, Jong Su;Cho, Hyun Kook;Jeong, Jin Hyun;Kim, Sung Ho;Shin, Man Yong
Journal of Korean Society of Forest Science
/
v.98
no.4
/
pp.409-416
/
2009
Forest biomass estimation is essential for greenhouse gas inventories and terrestrial carbon accounting. Remote sensing allows for estimating forest biomass over a large area. This study was conducted to estimate forest biomass and to produce a forest biomass map for Muju county using forest biomass conversion table developed by field plot data from the 5th National Forest Inventory and Landsat TM-5. Correlation analysis was carried out to select suitable independent variables for developing regression models. It was resulted that the height class, crown closure density, and age class were highly correlated with forest biomass. Six regression models were used with the combination of these three stand variables and verified by validation statistics such as root mean square error (RMSE) and mean bias. It was found that a regression model with crown closure density and height class (Model V) was better than others for estimating forest biomass. A biomass conversion table by model V was produced and then used for estimating forest biomass in the study site. The total forest biomass of the Muju county was estimated about 8.8 million ton, or 128.3 ton/ha by the conversion table.
Park, Jae-Young;Oh, Byoung-Dong;Kim, Jae-Bog;Chae, Hyo-Sok
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.144-148
/
2006
본 연구의 목적은 기존 수위-유량곡선식 개발과정에 내재되어 있던 목적함수 문제와 곡선식 개발과 정에서 대두된 발산과 처리 불능문제를 해결하기 위해서 새로운 형태의 관계식$(Q=p(h-e)^{\beta}-{\gamma})$과 비선형 매개변수 추정방법을 이을 제안하고 이러한 신개념의 수위-유량곡선식 산정모형을 개발하는데 있다. 기존 수위-유량곡선식은 기존수위-유량자료를 log변환하여 산정된 목적함수는 저수위에 비하여 고수위 부분에 잘못된 유량 값을 추정하는 문제를 갖고 있다. 기존의 발산 문제는 영유량 수위 매개변수 e를 찾고 추정된 식의 목적함수을 수렴하는 동안 매개변수 ${\beta}$가 비정상적으로 커지는 것이다. 이상의 두 가지 문제는 제어변수 ${\gamma}$를 도입하고 목적함수, $min{\sum}w(i)(Q-\hat{Q})^2$를 도입함으로서 개선 할 수 있게 되었다. 본 연구에서는 물리적 분석과 민감도 분석을 통하여 수위-유량곡선식에서 매개변수 ${\gamma}$의 영향이 e의 영향과 같음을 보였다. 또한 개발된 WinCARD 시스템은 기존의 목적함수에 의한 추정오차와 새롭게 제안된 목적함수의 개선사항을 상호 비교할 수 있게 하였다. 본 개발프로그램은 기존 수위-유량곡선식의 적합도를 평가하고, 하천유량 산정을 위한 신개념의 수위-유량곡선식을 개발하는데 활용될 수 있다.
In matched field processing (MEP), the observed acoustic field data is basically correlated with the replica produced by the modeling. therefore the results of source localization and correlation is limited by the mismatch of the environment and sensor location. In this paper. the effects of mismatch in environment and system on the bias in estimating the source location are investigated in the context of source localization. In the Pekeris waveguide, the simulation shows that the mismatches in environment and system, can cause a significant biases in the source localization and a degradation in MFP correlation. Mismatch caused by uncertainties in array tilt and depth, bottom depth, bottom sound speed, etc. causes degradation in source localization performance.
An L-curve corner detection method is proposed for the determination of the regularization parameter in optical flow estimation. The method locates the positive peak whose curvature difference from the just right-hand negative valley is the maximum in the curvature plot of the L-curve. while the existing curvature-method simply finds the maximum in the plot. Experimental results show that RMSE of the estimated optical flow is greater only by 0.02 pixels-per-frame than the least in the average sense. The proposed method is also compared with an existing curvature-method and the adaptive pruning method, resulting in the optical flow estimation closest to the least RMSE.
Journal of the Korean Data and Information Science Society
/
v.24
no.1
/
pp.33-39
/
2013
In the transformation of response variable in partial linear models outliers can cause a bad effect on estimating the transformation parameter, just as in the linear models. To solve this problem the processes of estimating transformation parameter and detecting outliers are needed, but have difficulties to be performed due to the arbitrariness of the nonparametric function included in the partial linear model. In this study, through the estimation of nonparametric function and outlier detection methods such as a sequential test and a maximum trimmed likelihood estimation, processes for transforming response variable robust to outliers in partial linear models are suggested. The proposed methods are verified and compared their effectiveness by simulation study and examples.
짝짓기 방법은 교란변수를 통제하기 가장 좋은 방법으로 알려져 있으나, 모수추정시 그 계산방법이 복잡하고, 포함된 모든 정보를 이용할 수 없다는 단점을 갖고 있다. 그럼에도 불구하고, conditional 모델을 이용한 matched 분석법은 짝지은 자료 분석시 가장 좋은 방법으로 인정되고 있다. 그러나 명확한 confounding 현상을 통제할 목적이 아닌 상태에서 짝지워진 자료를 matched 분석법으로 모수추정하는 경우나, 올바로 짝지워진 자료를 분석법의 편이성 때문에 unmatched 분석을 시도하는 경우, 오히려 estimation bias가 야기될 수 있다. 이러한 estimation bias의 통제능력을 몇 가지 분석방법을 이용하여 비교하고자, 1:2로 대응된 한 환자-대조군 자료를 이용하여 Mantel-Haenszel 분석법, 두가지의 unconditional model을 이용한 다변량분석법의 결과를 conditional model을 이용한 matched 분석법의 결과와 비교하였다. 1. Matched 분석법의 대용방법으로 사용된 세 가지 방법들은 모수추정면에서나 가설검정능력면에서 차이를 서로 보이지 않았다. 2. 짝짓기에 사용된 변수가 분석자료내에서 confounder나 effect modifier로 작용되지 않았음이 명백한 경우에는 이들 세 가지 통제 방법과 matched 분석법간에 차이가 없었다. 3. 짝짓기에 사용된 변수가 분석자료내에서 effect modifier로 작용하지는 않았으나, Confounder로 작용한 것으로 추정되는 경우, unmatched 분석법으로 인해 야기된 estimation bias의 통제능력이 이들 세 가지 대용방안 모두에서 인정되었다. 4. 짝짓기에 사용된 변수가 분석자료내에서 effect modifier로 작용하고 있음을 직접 확인할 수 있는 경우에는, overmatching에 의한 estimation bias를 의심할 수 있었으며, 이들 세 가지 통제방법은 오히려 unmatched 분석 방법에 가까운 모수를 추정하였다.
We can use quantile regression and expectile regression analysis to estimate trends in extreme regions as well as the average trends of response variables in given explanatory variables. In this paper, we compare the performance between the parametric and nonparametric methods for expectile regression. We introduce each estimation method and analyze through various simulations and the application to real data. The nonparametric model showed better results if the model is complex and difficult to deduce the relationship between variables. The use of nonparametric methods can be recommended in terms of the difficulty of assuming a parametric model in expectile regression.
A central bank infers market expectations of future yields based on yield curves. The central bank needs to precisely understand the changes in market expectations of future yields in order to have a more effective monetary policy. This need explains why a range of models have attempted to produce yield curves and market expectations that are as accurate as possible. Alongside the development of bond markets, the interconnectedness between them and macroeconomic factors has deepened, and this has rendered understanding of what macroeconomic variables affect yield curves even more important. However, the existence of various theories about determinants of yields inevitably means that previous studies have applied different macroeconomics variables when estimating yield curves. This indicates model uncertainties and naturally poses a question: Which model better estimates yield curves? Put differently, which variables should be applied to better estimate yield curves? This study employs the Dynamic Nelson-Siegel Model and takes the Bayesian approach to variable selection in order to ensure precision in estimating yield curves and market expectations of future yields. Bayesian variable selection may be an effective estimation method because it is expected to alleviate problems arising from a priori selection of the key variables comprising a model, and because it is a comprehensive approach that efficiently reflects model uncertainties in estimations. A comparison of Bayesian variable selection with the models of previous studies finds that the question of which macroeconomic variables are applied to a model has considerable impact on market expectations of future yields. This shows that model uncertainties exert great influence on the resultant estimates, and that it is reasonable to reflect model uncertainties in the estimation. Those implications are underscored by the superior forecasting performance of Bayesian variable selection models over those models used in previous studies. Therefore, the use of a Bayesian variable selection model is advisable in estimating yield curves and market expectations of yield curves with greater exactitude in consideration of the impact of model uncertainties on the estimation.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.