• 제목/요약/키워드: 변속기 시뮬레이터

검색결과 9건 처리시간 0.026초

지능형 자동변속 알고리즘 개발 및 성능 분석과 최적화를 위한 시뮬레이터 개발 (The Intelligent Shift Algorithm for Automatic Transmissions and The Development of Simulators for Its Optimization and Analysis)

  • 강효석;현창호;박민용
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.694-700
    • /
    • 2010
  • 본 논문에서는 퍼지 이론을 이용한 차량용 지능형 자동 변속 알고리즘을 제안하고, 알고리즘 성능 및 최적화 분석이 가능한 시뮬레이터를 개발한다. 제안된 지능형 자동변속 알고리즘은 목표 속도 도달 시간 및 구간 가속의 성능 저하 없이 엔진 회전수 변화를 적게 하여 승차감을 개선하고, 구간 시간 내의 구동력 사용량을 줄임으로써 에너지 효율을 향상 시킨다. 또한, 모의 실험이 가능한 시뮬레이터를 개발하여 다양한 조건에서의 알고리즘 성능을 분석하고, 알고리즘 최적화 및 실용화 개발 비용 절감에 기여한다. 시뮬레이터를 이용한 모의실험을 통하여 일반 자동변속기와 제안된 자동변속기의 성능을 검증하고 시뮬레이터를 이용한 최적화 작업의 간단한 예를 보인다.

휠로더 자동변속기 시뮬레이터 개발 (Development of an Automatic Transmission Simulator for a Wheel Loader)

  • 정규홍;신상호;이승일
    • 유공압시스템학회논문집
    • /
    • 제4권2호
    • /
    • pp.7-20
    • /
    • 2007
  • TCU is a shift controller far automatic transmission of which major functions are to determine the shift point and manage the shifting process based on the various input signals. As the recent digital control technologies advance, it plays a key-role to improve a transmission performance and its algorithm becomes more complicated. This paper describes the development of transmission simulator fur wheel loader that enables a TCU for normal stand-alone operation by the real-time emulation of TCU interface signals. It can be utilized for the analysis of shift control algorithm implemented in a commercial TCU as well as for the development of brand new TCU.

  • PDF

지게차 변속제어 알고리즘 검증을 위한 임베디드 변속기 시뮬레이터 개발 (Development of Embedded Transmission Simulator for the Verification of Forklift Shift Control Algorithm)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.17-26
    • /
    • 2023
  • A forklift is an industrial vehicle that lifts or transports heavy objects using a hydraulically operated fork, and is equipped with an automatic transmission for the convenience of repetitive transportation, loading, and unloading work. The Transmission Control Unit (TCU) is a key component in charge of the shift control function of an automatic transmission. It consists of an electric circuit with an input/output signal interface function and firmware running on a microcontroller. To develop TCU firmware, the development process of shifting algorithm design, firmware programming, verification test, and performance improvement must be repeated. A simulator is a device that simulates a mechanical system having dynamic characteristics in real time and simulates various sensor signals installed in the system. The embedded transmission simulator is a simulator that is embedded in the TCU firmware. information related to the mechanical system that is necessary for TCU normal operation. In this study, an embedded transmission simulator applied to the originally developed forklift TCU firmware was designed and used to verify various forklift shift control algorithms.

변속기 시뮬레이터를 이용한 진단 및 안전작동 알고리즘 분석 (Analysis of Diagnosis and Failsafe Algorithm Using Transmission Simulator)

  • 정규홍
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.89-97
    • /
    • 2014
  • As the digital control technologies in automotive industry have advanced, electronic control units(ECUs) play a key-role to improve system performance. Transmission control unit(TCU) is a shifting controller for automatic transmission of which major functions are to determine the shift and manage the shifting process considering the various sensor signal on transmission and driver's commands. As with any ECU in vehicle, TCU performs complex algorithms such as shift control, diagnostic and failsafe functions. However, firmware design analysis is hardly possible by the reverse engineering due to code protection. Transmission simulator is a hardware-in-the-loop simulator which enables TCU to work in normal mode by simulating the electrical signal of TCU interface. In this research, diagnosis and failsafe algorithm implemented on commercialized TCU is analyzed by using the transmission simulator that is developed for wheel loader construction vehicle. This paper gives various experimental results on the proportional solenoid current trajectories for different operating modes, error detection criterion and limphome mode gears for all the possible cases of clutch malfunction. The derived results for conventional TCU can be applied to the development of inherent TCU algorithms and the transmission simulator can also be utilized for the test of TCU to be developed.

임베디드 변속기 시뮬레이터를 이용한 진단알고리즘 설계 (Diagnosis Design Using Embedded Transmission Simulator)

  • 정규홍;김경동
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.56-61
    • /
    • 2010
  • Simulator is a development equipment which enables the ECU to operate in normal mode by simulating the interface signal between ECU and mechanical system electrically. Embedded simulator means simulation function is embedded in ECU firmware, hence the electrical signal interface is replaced by the substitution of information at system program level. This paper explains the development of embedded transmission simulator for the verification of TCU firmware function which covers shifting control and on-board diagnosis. The embedded simulation program is executed in TCU processor along with the TCU firmware and it provides TCU firmware with not only the speed information those are appropriate both in driving and shifting conditions, but also the fault detection signals. Experimental results show that the validity of embedded simulator and its usefulness to the TCU firmware development and verification.

  • PDF

고속 무한궤도 차량용 변속기 시뮬레이터 개발 (Development of Transmission Simulator for High-Speed Tracked Vehicles)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권4호
    • /
    • pp.29-36
    • /
    • 2017
  • Electronic control technologies that have long been developed for passenger cars spread to construction equipment and agricultural vehicles because of its outstanding performance achieved by embedded software. Especially, system program of transmission control unit (TCU) plays a crucial role for the superb shift quality, driving performance and fuel efficiency, etc. Since the control algorithm is embedded in software that is rarely analyzed, development of such a TCU cannot be conducted by conventional reverse engineering. Transmission simulator is a kind of electronic device that simulates the electric signals including driver operation command and output of various sensors installed in transmission. Standalone TCU can be run in normal operation mode with the signals provided by transmission simulator. In this research, transmission simulator for the tracked vehicle TCU is developed for the analysis of shift control algorithm from the experiments with standalone TCU. It was confirmed that shift experimental data for the simulator setup conditions can be used for the analysis of control algorithms on proportional solenoid valves and shift map.

고속 무한궤도 차량용 변속제어기 진단 알고리즘 분석 (Analysis of Diagnosis Algorithm Implemented in TCU for High-Speed Tracked Vehicles)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.30-38
    • /
    • 2018
  • Electronic control units (ECUs) are currently popular, and have evolved further towards the high-end application of autonomous vehicles in the automotive industry. Such digital technologies have also become widespread, in agriculture and construction equipment. Likewise, transmission control of high-speed tracked vehicles is based on the transmission control unit (TCU), performing complex gear change control functions, and diagnostic algorithms (a TCU's self-diagnostic and reporting capability of malfunction data through CAN communication). Since all functions of TCU are implemented by embedded-software, it is hardly possible to analyze specifications by reverse engineering. In this paper a real-time transmission simulator adaptable to TCU is presented, for analysis of diagnosis algorithm and standards. Signal simulation circuits are deliberately designed considering electrical characteristics of TCU inputs and various analysis tools, such as analog input auto scan function, and global output enable switch, are implemented in software. Test results from hardware-in-the-loop simulator verify tolerance time for each error, as well as cause of fault, error reset conditions.

자동화 수동 변속기의 CBW 시스템 개발 (Design and Implementation of Clutch-by-wire System for Automated Manual Transmissions)

  • 문상은;김민성;여훈;송한림;한관수;김현수;황성호
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.119-128
    • /
    • 2004
  • With the growing traffic density and increasing comfort requirements, the automation of the drive train will gain importance in vehicles. The automatic clutch actuation relieves the drivers especially in urban driving and stop-and-go traffic conditions. This paper describes the dynamic modeling of a clutch actuator and clutch spring. The dynamic model of the clutch system is developed using MATLAB/Simulink, and evaluated by experimental data using a test rig. This performance simulator is useful to develop the clutch-by-wire (CBW) system for an automated manual transmission (AMT). The electro-mechanical type CBW system is also implemented as an automatic clutch for AMT. The prototype of CBW system is designed and implemented systematically, which is composed of an electric motor, worm gear and slider-crank mechanism. The test rig is developed to perform the basic function test of the automatic clutch, and the developed prototype is validated by the experimental data on the test rig.

건설차량 주행용 동력 전달계의 실시간 시뮬레이터에 관한 연구 (A Study on Real Simulator of Running Power Train for Construction Vehicle)

  • 이일영;김진원;윤소남;양경욱
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.90-105
    • /
    • 1996
  • A real tine simulator of running power train for a construction vehicle was developed. The simulator mainly consists of following two parts; (1) running power train part and (2) running load generation part. An optimal servo control algorithm was adopted for designing the multi-variable digital control system of the simulator. By experiments investigating response characteristics under step-wise variation or pre-determined scenario of target vehicle velocity and target load torque, it was verified that the simulator could reproduce physical situations at and actual vehicle with excellent similarity.

  • PDF