• Title/Summary/Keyword: 변속기 설계

Search Result 105, Processing Time 0.017 seconds

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

Analysis of Rollover Angle According to Arrangement of Main Parts of Electric Tractor Using Dynamic Simulation (시뮬레이션을 이용한 전기 트랙터 주요 부품 배치에 따른 전도각 분석)

  • Jin Ho Son;Yeong Su Kim;Yu Shin Ha
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.77-84
    • /
    • 2023
  • In the agricultural sector, power sources are being developed that use alternative energy sources such as electric tractors and hydrogen tractors, away from internal combustion engine tractors. As parts such as engines and transmissions used in conventional internal combustion engine tractors are replaced with motors and batteries, the center of gravity changes, and thus the risk of rollover should be considered. The purpose of this study is to analyze the overturn angle of the main parts of the electric tractor through dynamic simulation to minimize the overturn accident and to derive the optimal arrangement of parts to improve stability. A total of nine dynamics simulations were conducted by designing three components of the PTO motor, drive motor and the battery pack, and three factors of the arrangement method. As a result of the experiment, it was confirmed that Type3 Level3, in which the drive motor and the PTO motor are located at the front and rear of the tractor, and two battery packs are located in the middle of the tractor, has a high rollover angle. As a result of this study, the stability increased as the center of gravity was placed backward and located below. Future research needs to be done to find the optimal location of parts considering their performance and placement efficiency.

Optimum Design of Teeth Shapes of Rotating Serration and Spline-type Torque Converter Parts Operating in a High Temperature Fluids (고온에서 맞물려 회전하는 토크컨버터 부품간 열 및 토크를 고려한 치형상의 최적설계)

  • Lee, Dong-uk;Kim, Cheol;Kim, Jungjun;Shin, Sooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1125-1130
    • /
    • 2017
  • The tooth shapes of serration-type and spline-type reactors are optimized using finite element methods to improve the working life of the part and to lower the stress concentration during rotation resulting from contact with the outer race for a reactor operating with $170^{\circ}C$ transmission oil. The results of thermal expansion analyses between an Al reactor and the steel outer race indicate that, before optimization, the gap between the two parts increases further as the serration-type reactor expands by 0.1 mm and the spline-type one strains by 0.08 mm. Because of shape optimization, a trapezoidal shape is obtained from the initial triangular serration and the rectangular spline of the two reactors. The maximum von Mises stress of the serration-type convertor decreased by 24.5 %, and by 9.3 % for the spline-type convertor. In addition, there is a 13 % reduction in the axial thickness, as compared to the initially designed model.

Analysis of Utilization and Maintenance of Major Agricultural machinery (Tractor, Combine Harvester and Rice Transplanter) (핵심 농기계(트랙터, 콤바인 및 이앙기) 이용 및 수리실태 분석)

  • Hong, Sungha;Choi, Kyu-hong
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.292-299
    • /
    • 2018
  • In a survey in which farmers were asked about their levels of satisfaction with agricultural machines, Japanese products scored higher than local products by 1.2, 1.3, and 1.4 times for tractors, combine harvesters, and rice transplanter, respectively. Japanese products corresponded to generally high satisfaction levels in terms of operating performance, operability, frequency of breakdowns, and durability, excluding sales price and after-sales services. Effective countermeasures through quality improvement are therefore necessary for Korean products. Furthermore, a survey of dealers showed that the components and consumables for core agricultural machines had high frequencies of breakdowns and repairs. Four major components of tractors represented 85.3% of all breakdowns and repairs, five components of combine harvesters represented 89.6%, and three components of rice transplanters represented 80.5%. Moreover, a comparison of the technological levels between local and imported machines showed that the local machines' levels were at 60-100% for tractors, 70-100% for combine harvesters, and 70-95% for rice transplanters. Small and mid-sized tractors, 4 interrow combine harvesters, and 6 interrow rice transplanters showed similar levels of technology. The results of the analysis suggest that action is urgently needed at a policy level to establish an agricultural machinery component research center for the development, production, and supply of commonly-used components, with the participation of manufacturers of agricultural machines and components, in order to enhance the competitiveness of local manufacturers and to revitalize the agricultural machine market.

A Study on the Competencies of Automotive Professional Engineers in Korea (자동차 신제품개발 관련 차량기술사의 전문적 업무역량 분석)

  • Kim, Joo-Young;Lim, Se-Yung
    • 대한공업교육학회지
    • /
    • v.33 no.2
    • /
    • pp.192-217
    • /
    • 2008
  • This paper investigated the perceived criticalities and patterns of Korean Professional Engineer's competency regarding the working activities of automative product development, manufacturing, etc by using questionnaires responded to the survey which were applied to the automotive professors, experts and professional engineers (vocational parties) by e/mail, etc. This research investigated the following questions: First, what are the characteristic patterns, relevancy and perceived criticalities of Korean Professional Engineer's competencies? Second, What are the ranked priority of the Korean Professional Engineers' competencies? Are there any differency for each item, sub group of job, intelectual criterior of the competencies between relevancy and perceived criticalities according to the types of vocational parties, etc.? Accoring to the results; first, Professor group showed highest points among 3 groups per each item of the competencies by vocational parties Second, Chassis design group ranked top position among the 8 sub groups by vocational parties and, third, Problem Solving Knowledge ranked highest points than any others. Korean Professional Engineers are found to be positioned as key members, leaders and managers on surveying market, product planning, designing product & components, developing component parts, establishing shop with production equipment, managing quality control & material handling, organizing relevant meetings, developing human resources by training and learning, to back up finance with law matters, cooperating with concerned parties to achieve organizational goals, and to coordinate projects. etc, identifying ethical issues and business skills in order to survive and win to be competitive in various kinds of the automotive industry battle fields.