• Title/Summary/Keyword: 변색 스위치

Search Result 5, Processing Time 0.018 seconds

A study on the color change switch and electrochemical doping of polythiophene (Polythiophene의 전기화학적 도핑과 변색 스위치에 관한 연구)

  • 구할본;김주승;김현철;김종욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.165-173
    • /
    • 1996
  • We prepared polythiophene and poly(3-methylthiophene) films, known as conducting polymer, by electrochemical method. Polythiophene and poly(3-methylthiophene) films were doped and undoped dopant for the studing the understanding of doping mechanism and possible application to the color change switch. We observed that the anodic, cathodic wave and absorption spectra were slightly changed during doping and undoping process in polythiophene. It shows that doping and undoping process were showed some difference by the appearance and disappearance of polaron and bi-polaron. In the relation of the peak of oxidative current density and potential sweep rate of cyclic voltammograms, the amount of dopant in polythiophene film was homogeneously increased at low scan rate. This also can be applied to the poly(3-methlythiophene).

  • PDF

Optical Properties and Photosensitivity of Zinc Phosphate Glass Containing Silver Particles (은 입자가 포함된 아연 인산염 유리의 광학적 성질과 광 반응성)

  • 최문구;임상엽;박승한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.102-103
    • /
    • 2002
  • 금속 입자들이 채워진 유리는 광 호변성 물질로써 광 저장 디스크, 광 도파로 그리고 도파로 레이저, 광 스위치 등의 다양한 응용분야에 이용될 수 있음이 여러 연구진들에 의해서 밝혀져 왔다. [1] 광 호변성이란 외부에서 입사되는 광에 의해서 유리의 색이 변색되는 현상인데 이는 유리에 함유된 물질들이 광이나 열에 의해서 변화하기 때문이다. Wood 등은 열처리와 불꽃에 의한 가열 등을 이용하여 은 입자를 작은 입자로 쪼개고. 이를 엑시머 레이저로 열처리시키면 은 입자가 분해된다는 것을 보였다. (중략)

  • PDF

Analysis Method for Damage Patterns of Low Voltage Switches for PL Judgment (PL 판정을 위한 저압용 스위치의 소손 패턴 해석기법)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.136-141
    • /
    • 2010
  • The purpose of this study is to examine the structure and heat generation mechanism of low voltage switches used to turn on or off the power supply to an indoor lighting system and investigate how the fixtures and movable contacts of the switches are damaged depending on the types of energy sources in order to secure the judgment base for expected PL disputes. Based on the Korean Standard (KS) testing method for incombustibility, this study applied a general flame to the switch. In addition, current was supplied to the switch using the PCITS (Primary Current Injection Test System). The ambient temperature and humidity were maintained at $22{\pm}2^{\circ}C$ and 40~60% respectively while performing the test. It is thought that the switch generated heat due to a defective connection of the wire and clip, insulation deterioration and defective contact of the movable contact, etc. The surface of the switch damaged by the general flame was uniformly carbonized. When the flame source was removed, the fire on the switch was extinguished naturally. From the result obtained by disassembling the switch carbonized by the general flame, it could be seen that fixtures and movable contacts remained in comparatively good shape but the enclosure, clip support, movable contact, indicating lamp, etc. showed carbonization and discoloration. In the case of the switch damaged by overcurrent, the clip connecting the wires, clip support, etc. showed almost no trace of damage, but the fixtures, movable contact, indicating lamp, etc. were severely carbonized. That is, the sections with high contact resistance were intensively damaged and showed a damage pattern indicating that carbonization progressed from the inside to the outside. Therefore, it is possible to judge the initial energy source by analyzing the characteristics of the carbonization pattern and the metal fixtures of damaged switches.

A Study on the Photo-Degradation Properties of the Spiropyran Using THz-TDS (테라헤르츠 시간 영역 분광법을 이용한 스피로파이란의 광 퇴화 특성 연구)

  • Bang, Jin-Hyuk;Park, Myoung-Hwan;Ryu, Han-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.28-33
    • /
    • 2016
  • The spiropyran is a typical material having photodegradation properties in the process of photochromism. The spiropyran has been utilized in various applications such as optical switch, optical memories, and biosensor because of its remarkable stability, fast responsive time, stronger color change, and photo-induced controllability. However, the spriropyran is photodegraded by the repetitive optical irradiation. The photodegradation of spiropyran have been investigated by using UV-Visible spectroscopy, nuclear magnetic resonance (NMR), and Raman spectroscopy. Herein, the properties of spiropyran were characterized by using terahertz time-domain spectroscopy (THz-TDS) in the terahertz frequency region. In terahertz region, the measured absorbance of spiropyran was increased due to the photodegradation induced by the repetitive UV irradiation. The absorbance tendency of spiropyran in the terahertz frequency region was compared with that in the visible region, and they were completely opposite to each other.