이 논문에서는 평균-이동모형(mean-shift model)을 이상점을 위한 대립모형으로 사용하여 변량모형(random effect model)에서의 이상점 검출을 위한 베이즈인자(Bayes factor)를 제시한다. 그러나 가능한 사전 정보가 없어서 무정보사전분포(noninformative prior distribution)가 사용되어야만 할 때, 대부분의 무정보사전분포는 부적절분포(improper distribution)이기 때문에 베이즌 인자에는 사전분포로부터 나온 미지의 상수가 포함되어 잇다. 이 문제를 해결하기 위해 이 논문에서는 Berger와 Pericchi (1996)가 제시한 내재베이즈인자(the intrinsic Bayes factor;IBF)를 사용한다. 또한 이 베이즈인자를 계산상 어려움을 해결하기 위해 Verdinellidh Wasserman(1995)의 일반화 세비디지키 밀도비를 이용하여 수정하고 이것을 이용하여 이상점을 검출하는 방법을 제시한다. 마지막으로 인위적으로 이상점을 포함하고 있는 데이터를 만들고 제시된 방법으로 가상실험을 하고 또한 실제 데이터에서 제시한 방법으로 이상점을 찾아보았다.
다양한 연구 분야에서 강수량, 온도, 습도, 일조량은 연구에 필요한 기후 인자로써 사용되어져 왔다. 외국의 경우 기후 인자들과의 관계를 도출해 내는 연구가 이루어 졌지만 국내의 경우는 이러한 연구가 이루어지지 않고 있다. 본 연구에서는 이러한 인자들과의 관계를 강수-온도-습도-일조량이 연동되어 모의되는 기법을 개발하고자 한다. 기존 국내외 연구결과들은 지수함수식의 형태를 가지는 모형을 이용하여 온도-일조량(radiation), 온도-습도, 습도-일조량, 온도와 강수-일조량과 습도를 개별적으로 추정하는 연구들이 있었다. 그러나 온도, 강수량, 습도, 일조량 등은 기상학적 관점에서 모두 연관성을 가지고 각 변량들에 영향을 주고 있다. 이러한 점에 착안하여 본 연구에서는 4가지 변량들이 가지는 관계를 규명하고 각 변량간의 상관관계뿐만 아니라 4가지 변량이 동시에 상관성을 갖도록 모형을 구축하고자 한다. 일반적으로 각 변량들 간의 확률적인 거동을 동시에 고려할 수 있는 Network 모형이 많이 이용된다. 본 연구에서는 Bayesian Network 모형을 활용하여 4가지 변량 간에 Bayesian Network를 구성하고, 통계적 모형으로 발전시켜 기후변화 연구에 활용하고자 한다. 제안된 방법론에 대한 적합성을 평가하기 위해, 서울지점을 대상으로 온도, 강수, 습도, 일조량 값을 이용하였다. 기후변화에 따른 수문순환모형에서 이들 4가지 변량은 기본 입력자료로 이용되고 있으나, 현재까지는 강수 및 온도를 사용한 모형 개발이 이루어지고 있다. 이러한 점에서 본 연구의 결과는 기후변화에 따른 물순환 변동성을 평가하는 기본 자료로서 활용될 수 있을 것으로 판단된다.
일반적으로 호우사상의 특성은 강우강도, 지속기간, 총 강우량으로 정량화된다. 주어진 호우 사상에 대한 재현기간은 보통 위 세 개 변량 중 두 개의 변량에 대한 이변량 빈도해석을 통해 결정된다. 따라서 3 가지의 다른 빈도해석이 가능하며, 원칙적으로 이 세 가지 빈도해석 결과는 같아야 한다. 그러나, 문제는 어떤 변량을 선택하느냐에 따라 빈도해석 결과가 달라진다는 점이다. 본 연구에서는 이 문제를 해결하고자 다음과 같은 연구를 수행하였다. 첫 번째로 1961-2010년에 관측된 서울지점 연최대치 호우사상에 대한 이변량 빈도해석을 수행하였다. 이변량 빈도해석은 Frank, Gumbel-Hougaard, Clayton, ali-Mikhail-Haq copula 모형을 이용하여 수행하였으며, 모형의 매개변수는 두 변량의 상관관계를 나타내는 Kendall's tau를 이용하여 추정하였다. 호우사상에 대한 이변량 빈도해석을 수행한 결과, 결과가 일관되지 않고 고려한 두 가지 강우변량에 따라 다르게 나타난 것을 확인하였다. 두 번째로 보편적인 강우강도식을 이용하여 호우사상을 이루는 세변량의 특성을 분석하였다. 본 연구에서 고려한 강우강도식은 Talbot 형, Sherman 형, Japanese 형, Grunsky 형이다. 일반적인 강우강도식에서 지속기간과 강우강도의 관계는 I~t^a와 같이 나타나며, 이 때 a의 범위는 -0.5부터 -1까지 값으로 정해진다. 마지막으로, 호우사상을 이루는 세 변량의 상관관계를 이용하여 가장 적절한 이변량 빈도해석결과를 도출하는 강우 변량의 조합을 결정하였다. 결론적으로, 본 연구에서는 지속기간과 강우강도를 copula 모형을 이용한 이변량 빈도 해석의 가장 적절한 것으로 판단되었다.
Journal of the Korean Data and Information Science Society
/
제20권5호
/
pp.787-796
/
2009
이 논문에서는 반복측정치에 대한 분석모형 중, 혼합모형의 일종인 변량계수모형에 대하여 이론적으로 고찰한다. 특히 혼합모형의 설정, 모수 추정에 대하여 통계적으로 고찰하고 변량계수모형에 대한 가능한 모형을 열거하며, 그에 따르는 추정과 검정을 논의한다. 사례연구로 식이요법자료를 대상으로 가능한 변량계수모형을 적용하여 추정 및 검정을 실시한 결과, 고정인자인 사전값, 처리, 키 및 시간들의 인자는 체중감소에 대단히 유의함을 보여주었지만, 나이와 혈압은 유의하지 않았다. 처리효과에 있어서는 식이요법과 운동을 병행했을 때의 처리가 식이요법만 실시했을 때의 처리보다 체중이 더 감소했음을 알 수 있으며, 시간에 따른 체중감소의 효과는 삼차함수의 관계가 성립된다. 변량인자로는 개체효과는 유의하며 개체별 시간에 대한 교호작용의 효과는 차수가 높아질수록 급속도로 감소하여 3차 함수 관계가 적절한 모형으로 최종 선택되었다.
기존 수자원계획에 있어서 수문량 예측은 매우 제한적으로 활용되고 있는 실정으로서 최근 기후변화 및 이상기후로 기인하는 기상학적 불확실성 증가에 대해서 효과적으로 대응 하기가 어렵다. 본 연구에서는 기상인자를 활용한 수문변량 예측기법을 개발하고자 하며 국내에 수문자료가 충분한 지역에 대해서 모형의 적합성과 타당성을 평가하고자 한다. 대부분의 수문변량은 해수면온도, 해수면기압, 바람장 등 Large Scale의 기상학적 특성과 연관성을 가지고 있으며 선행시간을 가지고 수문순환에 영향을 주고 있다. 수문변량과 기상학적 변량사이에는 일반적으로 비선형 관계를 가지고 있는 것으로 알려지고 있으며 이러한 비선형 관계를 효과적으로 예측하기 위해서 본 연구에서는 비선형 예측모형을 개발 하고자 한다. 최근 비선형 예측모형에서 불확실성을 고려한 모형에 대한 연구가 활발히 진행되고 있으며 특히, 다중 모형을 사용한 Ensemble 개념의 예측모형 도입이 이루어지고 있다. 본 연구에서는 국내 다목적댐 유입량 및 강수량에 대해서 최적 기상변량을 도출하고 이를 활용한 비선형 Ensemble 예측모형을 개발하였다. 일반적인 선형 회귀분석 모형에 비해 기상현상과 수문현상에 비선형성을 효과적으로 재현할 수 있는 장점을 확인할 수 있었으며 이와 더불어 예측결과에 대한 불확실성을 제공함으로서 신뢰성 있는 수자원 계획을 위한 기초자료로서 활용이 가능할 것으로 판단된다.
본 연구에서는 독립 호우사상을 이용하여 이변량 빈도해석 및 유출해석을 수행하고, 이로부터 산정된 설계홍수량을 기존 단변량 빈도해석 결과와 비교하였다. 추가로 빈도해석 결과를 유출모형에 적용하기 위한 강우의 시간분포 모형으로 교호블록 방법 및 Huff 방법을 이용하여 그 특성이 비교될 수 있도록 하였다. 본 연구에서 고려한 빈도해석 결과로부터 산정된 설계홍수량을 비교하기 위해 Clark 모형을 유출모형으로 이용하였으며, 유효우량을 산정하기 위한 방법으로 SCS 방법을 동일하게 적용하였다. 이러한 특성은 유역 크기가 다른 세 유역(중랑천, 청계천, 우이천)에 적용한 결과로부터 비교될 수 있도록 하였다. 그 결과를 정리하면 다음과 같다. 첫째, 연 최대치 독립 호우사상에 대한 이변량 빈도해석 결과, 지속기간이 짧은 경우에는 단변량 빈도해석 결과와의 차이가 매우 크나 지속기간이 길어짊에 따라서 그 차이가 현저히 줄어드는 것으로 나타났다. 아울러 지속기간이 짧은 경우, 단변량 빈도해석 결과가 이변량 빈도해석 결과보다 더욱 크게 나타났으나 특정 지속기간 이상부터는 그 결과가 역전되어 나타났다. 둘째, 강우 시간분포 모형으로 교호블록 방법을 적용하는 경우가 Huff 방법을 적용한 경우보다 더욱 큰 첨두유출량을 발생시키는 것으로 나타났다. 아울러 교호블록 방법을 적용하는 경우에는 강우 지속기간의 증가에 따라서 첨두 유출량이 점차 증가하는 것으로 나타났으나, 강우 지속기간이 대략 24시간 정도 되었을 때 그 값이 거의 수렴하는 것으로 나타났다. 셋째, 중랑천 유역에 대해 Huff 방법을 적용하여 유출해석을 수행한 결과에서는 이변량 설계강우를 적용한 경우가 단변량 설계강우를 적용한 경우보다 더욱 큰 홍수량을 발생시키는 것으로 나타났다. 반면에 청계천 및 우이천 유역의 경우에는 이변량 설계 강우를 적용한 경우보다 단변량 설계강우를 적용한 경우의 홍수량이 다소 큰 것으로 나타났다. 넷째, 교호블록 방법을 적용하여 유출해석을 수행한 경우, 본 연구에서 고려한 모든 유역에 대해 이변량 설계강우를 적용한 경우가 단변량 설계강우를 적용한 경우보다 더 큰 홍수량을 발생시키는 것으로 나타났다.
대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.
본 시험은 배양액 내 pH 변화에 따른 이온과 EC의 모형을 구명하고자 수행하였다. 배양액 내 $HPO_4{^{-2}}$와 $H_2PO_4{^-}$의 변량에 따른 pH가 변하는데, pH 4.0-5.0은 EC의 변량이 상승하고, pH 5.0-7.0은 EC의 변량이 완만하고, pH 7.0-8.0은 다시 상승하였다. 배양액 내 다량원소의 변량을 보면, pH가 상승할수록 K, Ca, N, P의 이온 농도도 증가하는데, 특히 K과 P의 변량이 크게 나타났다. 반면 Mg와 S의 변량은 일정하게 유지되었다. 배양액의 IBM(ion balance model)에 따른 분석에서, EC의 변량은 크게 변하지 않고, 이온의 균형점이 a분면에서 d분면으로 이동하면 pH가 상승하면서 음이온 보다 양이온이 증가하는 것으로 나타났다. 또한 pH 변량이 높을수록 EC 중앙선으로부터 멀어져 배양액의 이온 불균형이 증가되었다. $HPO_4{^{-2}}$와 $H_2PO_4{^-}$의 변량에 대한 K와 Ca의 당량비 보정은 pH가 증가할수록 K는 감소하지만 Ca는 증가하였고, EC 변량의 영향보다 큰 것으로 나타났다. K와 Ca의 당량비 보정에 따른 pH 변량은 0.97의 이차 다항식 상관모형을 나타냈다. 본 연구를 통해 인산염의 구배에 따른 pH, 이온, EC의 변량에 대하여 pH 변량 모형이 구명되었다.
본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.
관측 가능한 변수들 사이의 관계를 묘사한 갈릴레오의 물리학 법칙 발견 이후, 과학은 큰 성과를 거두며 발전해왔다. 그러나, 관측할 수 없는 변량효과를 함께 이용하여 더 많은 자연 현상을 설명할 수 있게 되었고, 이를 이용한 최초의 통계적 모형인 혼합효과모형이 소개되었다. 계산기술의 발달과 더불어 복잡한 현상에 대한 추론을 위하여 혼합효과모형은 그 중요성이 더욱 커지고 있다. 이러한 혼합효과모형은 최근 다단계 일반화 선형모형을 포함한 여러 모형으로 확장되었으며, 관측할 수 없는 변량효과를 추론하기 위한 다단계 가능도가 제시되었다. 혼합효과모형 특집호를 통해 이러한 모형들이 여러 통계학적 문제점을 해결하는 과정을 제시하고, 앞으로 어떤 확장이 추가적으로 요구되는 지에 대하여 논할 것이다. 빈도록적 접근법과 베이지안 접근법을 함께 다룬다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.