• Title/Summary/Keyword: 벽체 내력

Search Result 82, Processing Time 0.025 seconds

Evaluation of Structural Capacity of SC Walls in Nuclear Power Plant accounting for the Area Lost to Openings (개구 저감률에 의한 원전 SC벽체의 내력 평가)

  • Chung, Chul-Hun;Jung, Raeyoung;Moon, Il Hwan;Lee, Jungwhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2181-2193
    • /
    • 2013
  • The shear wall with openings built with reinforced concrete(RC) have been elaborately studied by many researchers, whereas the steel plate concrete(SC) wall structure has not been investigated as much. Recent SC wall structures developed in Korea have been partly applied to nuclear power plant structures, although its design specification or guideline for the SC wall structure with openings has not been completed yet. This study based on the account for the area lost to openings evaluates the effects of opening on the structural capacity of the SC structure within nuclear power plant. The results obtained from the study on the area lost to openings have been compared with experimental and numerical studies.

Evaluations of Shear performance and Compressive strength of Light-weight hybrid panel (경량합성벽체의 전단성능 및 압축내력 평가)

  • Lee, Dong Hyuck;Lee, Sang Sup;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.33-43
    • /
    • 2005
  • This paper presents the test results and evaluations for the energy dissipation capacity and compressive performance of light-weight hybrid panels. A total of 26 full-scale specimens of light-weight hybrid panels were tested. The parameters include the presence of light-weight foamed mortar, the specific gravity of light-weight foamed mortar (0.6, 0.8, 1.0, 1.2), the finishing materials (light-weight foamed mortar, OSB [Oriented Strand Board], gypsum board), the shape of bracing (x, ~), and the size of panels (1P-900 mm 2,400 mm, 2P-1,800 mm 2,400 mm). The results of the cyclic tests are somewhat different from those of monotonic tests, due to the different specific gravity of light-weight foamed mortar. It was found from the compressive tests that the ultimate strength and initial stiffness are increased by means of light-weight foamed mortar (2~2.5 times in ultimate strength and 2~3 times in initial stiffness).

Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes (각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가)

  • Kim, Ho Soo;Hong, Seok Il;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.253-262
    • /
    • 2005
  • Because the framed wall system using steel studs and runners with square steel tubes as structural elements is reinforced by the horizontal members called runners, it has more strength and load bearing capacity than the steel house wall system. Also, this system improves adiabatic and sound insulation performance by filling up the autoclaved lightweight concrete. We need to evaluate load bearing capacity according to the axial load and lateral load in case this system is applied in the housing system with 3~5 stories through variations in intervals for the runners under the placement effect of autoclaved lightweight concrete. Therefore, this study seeks to analyze axial and shear behavior of the framed wall system according to the placement effect of autoclaved lightweight concrete, and to secure safety for the vertical and lateral loads.

Proposing the Shear Force Equation of GFRP Strengthened Masonry Wall (유리섬유로 보강한 조적벽체의 전단내력식 설정에 관한 연구)

  • Kwon, Ki-Hyuk;Lee, Soo-Chul;Jung, Won-Chul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.1-9
    • /
    • 2007
  • This study does by purpose that propose shear resisting force equation of reinforced masonry wall that is reinforced by GFRP(glass fiber reinforced polymer) based on result that is noted through cyclic loading of masonry wall and a shaking table experiment of mock that reflect identifying marks of masonry building which is constructed in domestic. It was Rocking mode to dominate failure of masonry wall in the experiment results, and the equations of UBC show the most resemblant value with experiment results. Through this study, propose the shear force equation of GFRP strengthened masonry wall as following. $$V_n=0.02A_n{\sqrt{f'_m}}+0.022b_gh_g(1+2{\alpha})^3{\sqrt{f_g}}(N/mm^2)$$.

Evaluation of Structural Behavior of SC Walls in Nuclear Power Plant with Openings (개구부를 갖는 원전 SC구조 벽체의 구조거동 평가)

  • Chung, Chul-Hun;Lee, Han-Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.277-287
    • /
    • 2012
  • The shear wall with openings built with reinforced concrete (RC) have been elaborately studied by many researchers, whereas the steel plate concrete (SC) wall structure has not been investigated as much. The recent SC wall structures developed in Korea have been partly applied to nuclear power plant structures, although its design specification or guideline for the SC wall structure with openings has not been completed yet. This study based on numerical analysis evaluates the effects of opening on the structural resistance of the SC structure in nuclear power plant. As a result from nonlinear analysis, since the strengthening for openings significantly affect the overall strength of SC wall, the openings should be considered to strengthen them around adjacent area. It is also proved that the strengthened openings have the sufficient resistance and ductility regardless their size, shape, location, and quantity.

Evaluation of Seismic Strengthening Approach at the Boundary Elements of RC Walls using Prestressed Wire Rope Units (프리스트레스트 와이어로프를 사용한 RC 벽체의 단부 경계요소 내진보강 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • The present study examined the reversal cyclic flexural behavior of walls with jacket section approach for seismic strengthening through forming the boundary elements at both ends of the wall. The prestressed wire ropes were used for the lateral reinforcement to confine the boundary element of the wall. The main parameter investigated was the height of the jacket section for strengthening. The limit height of the strengthening jacket section was determined by comparing the moment distributions between the existing and strengthened walls. Test results showed that the examined jacket section approach was significantly effective in enhancing the flexural resistance of walls, indicating 46% higher stiffness at peak strength and 210% greater work damage indicator, compared with the flexural performance of the unstrengthened wall. The ductility of the strengthened walls was insignificantly affected by the height of the jacket section when the height is greater than twice the wall length. The flexural capacity of the strengthened walls was 22% higher than the predictions obtained using the equivalent stress block specified in ACI 318-14.

Shear Capacity of Composite Basement Walls (합성 지하벽의 전단성능)

  • 김성만;이성호;서수연;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.321-330
    • /
    • 2002
  • This paper presents the experimental results of composite basement wall in which H-pile and reinforced concrete wall are combined using shear connector Twelve specimens are tested to evaluate the shear capacity of the wall. Main variables in the test are composite ratio, distribution of shear connector, thickness of wall, shear-span ratio, and shear reinforcement. Test results indicate that the shear capacity of test specimens varies with the foregoing variables except the composite ratio. The results are compared with strengths predicted using the equations of ACI 318-99, Zsutty, and Bazant. Based on this investigation, a method for predicting the shear strength of composite basement walls is proposed.

내화 비내력 칸막이

  • O, Jeong-Gyu
    • 방재와보험
    • /
    • s.114
    • /
    • pp.54-57
    • /
    • 2006
  • 각종 건축물에 사용되는 칸막이가 적합하고 올바르게 설치되었을 때 건물 내 거주자는 안전하게 생활할 수 있을 것이다. 때문에 많은 칸막이 제조업체들은 칸막이 설계에 대한 광범위한 연구개발을 수행하고 있다. 유럽에서는 '비내력 벽체로 사용하기 위한 내부 칸막이 용구' 로 정의되는 내화 비내력 칸막이에 대해 알아본다.

  • PDF

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.

Comparative Study on Seismic Performance of Masonry Wall Strengthened by FRP Sheet or Steel-Bar Truss System (FRP 시트 및 강봉 트러스 시스템으로 보강된 조적벽의 내진성능 비교 연구)

  • Lee, Hye-Ji;Kim, Sanghee;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, the in-plane and out-of-plane seismic performance of the masonry wall strengthened using the steel bar truss system proposed by Hwang et al. (2021a, 2021b) or using FRP sheets were compared and evaluated. The maximum strength of the masonry wall reinforced with FRP sheets for the in-plane and out-of-plane loading was 71% and 85%, respectively, of that of the non-reinforced masonry wall. Meanwhile, the maximum strength of the masonry wall reinforced with the steel bar truss system was approximately 1.8 times higher than that of the non-reinforced masonry wall. Compared with the FRP sheet method, the steel bar truss system was excellent at improving the maximum load capacity, rigidity, and energy dissipation capacity. However, in the case of a masonry wall reinforced with FRP sheets, the masonry wall was overstrengthened with the FRP sheets covering the entire masonry wall, and it is considered that the overstrengthened specimen experienced sliding failure, resulting in a lower strength than the other specimens. A follow-up study is needed to compare the seismic performance of the specimen involving only a part of the masonry wall reinforced with the FRP sheets and the specimen reinforced using the steel bar truss system.