• Title/Summary/Keyword: 벽면충돌제트

Search Result 29, Processing Time 0.02 seconds

An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement (제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구)

  • Yu, Han-Seong;Yang, Geun-Yeong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

Numerical Study on the Effect of the Wall Curvature on the Behaviors of the Impinging Sprays (충돌분무의 거동에 미치는 벽면곡률의 영향에 대한 수치해석 연구)

  • 고권현;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.59-65
    • /
    • 2004
  • In this paper a numerical study was performed for the effect of the wall curvature on the behaviors of fuel sprays impinging on the concave Surface. Actually, in the real diesel engines, a piston head has a curved shape for the purpose of the controlling the movement of fuel droplets and the mixture formation. For past decades, although many experimental and numerical works had been performed on the spray/wall impingement phenomena, the curvature effect of impinged wall was rarely investigated. The wall curvature affects on the behaviors of the secondary droplets generated by impingement and the concave wall obstructs the droplets to advance from the impinging site to outward. In present study, the simulation code was validated for the flat surface case and three cases of the different curvature were calculated and compared with the flat surface case for several parameters, such as the spray radius, the spray height and the position of vortex center of gas phase. The simulation results showed that the radial advance of the wall spray and the vortex is decreased with increasing the curvature. It was concluded that the curvature of the impinged wall significantly affects the behaviors of both the gas-phase and the droplet-phase.

The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame (예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구)

  • 정은규;조경민;김호영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

Numerical Study of Impinging Sprays Considering Anisotropic Characteristics of Turbulence (비등방성 난류특성을 고려한 분무의 벽면충돌 현상에 대한 수치해석 연구)

  • 고권현;유홍선;이성혁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.77-84
    • /
    • 2003
  • It is an aim of this study to perform extensive numerical study for analyzing the anisotropic turbulence effects on spatial and temporal behaviors of diesel sprays after wall impingement. The turbulence model of Durbin is used for comparisons with the $k-\varepsilon$ model. The turbulence-induced dispersions of droplets are considered to describe the anisotropy of turbulence effectively and the spray/wall interactions are simulated using the model of Lee and Ryou. The present study investigates the internal structures of impinging diesel sprays such as Sauter mean diameter (SMD), loca1 droplet velocities, and local gas velocities and also compares the results predicted by two turbulence models with the experimental data. The Durbin's model considering the anisotropy of turbulence predicts both gas and droplet tangential velocities better than the$k-\varepsilon$ model does. It is concluded that the anisotropy of turbulence should be considered in simulating impinging diesel sprays.

Adiabatic wall temperature distribution on a plate as under-expanded ratio and impinging angle (과소팽창비와 경사각에 따른 평판에서의 단열벽면온도분포)

  • Sun Yu Man;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan;Lee Jang Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.113-118
    • /
    • 2004
  • Experiments are conducted to get basic information of under-expanded impinging jet in the near field. Experimental parameters are impinging angle and under-expanded ratio. As the under-expanded ratio increases, the maximum surface pressure decreases and the reducing effect of recovery factor increases. As the impinging angle decreases, the peak of surface pressure is displaced slightly from the geometric center of the plate to the upward region and the cooling region is expanded in the downward region, whereas it is contracted in the upward region.

  • PDF

A NUMERICAL STUDY ON JET IMPINGEMENT OF PULSED PLASMA DISCHARGE ON A FLAT PLATE (벽면에 충돌하는 펄스 플라즈마 제트 유동특성에 대한 수치적 연구)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.70-77
    • /
    • 2009
  • In this study, time-dependent numerical analysis was carried out to investigate the plasma jet impingement on a flat plate, and a compressible form of two-dimensional inviscid gas dynamics equations were solved using the flux corrected transport algorithm. The mathematical modeling of Joule heating in the polycarbonate capillary bore and the mass ablation from the bore wall was incorporated in the numerical analysis and the series of computation was performed for three cases depending on the distance of the opposing plate from the capillary exit. The computational results reveal that the presence of the opposing plate does not affect the flow conditions inside the capillary when compared to the case of open-air plasma discharge. In the exterior region, the flow structure shows the typical supersonic underexpanded jet which consists of the strong Mach disk in front of the opposing plate and the barrel shock at the side of the jet. It is found that the shock evolution becomes more quasi-steady when the plate distance decreases. Also, the effects of the distance between the capillary bore exit and the opposing plate on the flow conditions along the opposing plate are investigated and the pressure variation on the plate shows more complicated interaction between the plasma discharge and the opposing plate when the location of plate becomes closer to the capillary exit.

Characteristics of Supersonic Nozzle and Jet Impingement (초음속 노즐과 벽면 충돌제트의 유동특성)

  • Hong, Seung-Kyu;Lee, Kwang-Seop;Sung, Woong-Je
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.256-262
    • /
    • 2001
  • Viscous solutions of supersonic side jet nozzle and supersonic jet impinging on a flat plate are simulated using three-dimensional Navier-Stokes solver. For rapid and abrupt control of a missile in supersonic flight, side jet on a missile body is found to be a useful devise as evidenced by recent missile development at several nations. The magnitude of the side jet and the duration of it decide the level of control of such a missile system. The aerodynamic characteristics of the side jet devise itself are examined in terms of key parameters such as the side jet nozzle geometry, the chamber pressure and temperature. On the other hand, the jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. As the plate is placed close to the nozzle, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. The amplitude of wall pressure fluctuations subsides as the plate/nozzle distance increases, and the frequency of the wall pressure is estimated on the order of 10.0 KHz. Objectives of this paper are to show accurate simulation of nozzle flow itself and to demonstrate the jet flow structure when the jet interacts with a wall at a close range.

  • PDF

Numerical Study of Two-Dimensional Supersonic Ejector Flows (이차원 초음속 이젝터 유동에 대한 수치해석적 연구)

  • 김희동;이영기;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • Industrial ejector system is a facility to transport, to compress or to pump out a low pressure secondary flow by using a high pressure primary flow. An advantage of the ejector system is in its geometrical simplicity, not having any moving part, compared with other fluid machinery. Most of the previous works have been performed experimentally and analytically. The obtained data. are too insufficient to improve our current understanding on the detailed flow field inside the ejector. In order to provide more comprehensive data on this ejector flow field, two-dimensional computations using Reynolds-averaged Navier-Stokes equations were performed for a very wide range of operating pressure ratio of the supersonic ejector with a secondary throat. The current results showed that the supersonic ejector system has an optimum pressure ratio for the secondary flow total pressure to be minimized. The numerical results clearly revealed the shock system, shock/boundary layer interaction, and secondary flow entrainment inside the supersonic ejector.

  • PDF