• Title/Summary/Keyword: 벽면강도

Search Result 67, Processing Time 0.025 seconds

Effect of Mainstream Turbulence Intensity on Film Cooling of Combustor (연소기 벽면 막냉각에 주유동의 난류강도가 미치는 영향)

  • Kim Young Bong;Rhee Dong Ho;Cho Hyung Hee;Hahm Hee-Cheol;Bae Ju Chan;Oh Min Geun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.132-136
    • /
    • 2004
  • Experimental study has been conducted to investigate effect of mainstream turbulence intensity on film cooling performance of staggered rows of rectangular holes in combustor. Temperature fields and adiabatic film cooling effectiveness under $10\%$ mainstream turbulence intensity are measured. The results of temperature fields show that overall values are decreased and thicker film of coolant is formed downstream of rows of holes for high mainstream turbulence intensity. The results of film cooling effectiveness show that the values around the holes are smaller than the case of the low mainstream turbulence intensity, however, the difference of film cooing performance is decreasedforthefurtherdownstream.

  • PDF

Analysis of safety and allowable capacity of storm sewer according to debris accumulation (토사적체에 따른 우수관의 허용용량 및 안전도 해석)

  • Kwon, Hyuk-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.249-249
    • /
    • 2011
  • 본 연구에서 AFDA(Approximate Full Distribution Approach)를 사용하여 하수관의 성능불능확률(Probability of capacity failure)을 정량적으로 산정할 수 있는 신뢰성 모형이 개발되었다. 전국 여러 도시의 연 최대강우강도(Yearly Maximum Rainfall Intensity)를 이용하여 그 확률분포함수를 규명하였고 우수관(Storm sewer)의 성능불능확률 산정을 위한 신뢰성모형에 적용하였다. 본 연구에서는 우수관의 성능불능확률을 산정하여 신뢰성 해석을 수행하였다. 먼저 적용도시의 강우자료를 면밀히 분석하고 연 최대강우강도의 통계적 특성을 분석하여 신뢰함수를 구축하였으며 우수관의 성능불능확률 산정을 위한 신뢰성 모형이 개발되었다. 그리고 우수관에 적체되는 토사의 깊이에 따라 우수관의 용량을 산정하였다. 재현기간별 강우강도를 사용하여 청주와 춘천의 원형우수관의 성능불능확률을 산정한 결과, 재현기간의 증가에 따란 성능불능확률을 급하게 상승하는 것을 알 수 있었다. 5년, 10년, 20년 재현기간에 따른 연 최대강우강도를 사용하여 청주와 춘천의 우수관의 성능불능확률을 산정하였다. 또한 토사의 적체에 따른 우수관 유효면적의 변화를 고려하여 두 도시의 우수관의 성능불능확률을 산정하였다. 원형 우수관의 성능불능확률을 산정한 결과, 토사의 적체에 따라 우수관의 용량은 감소하여 성능불능확률이 크게 증가하는 것을 확인 할 수 있었다. 따라서 우수관의 용량 감소를 막고 성능불능확률을 최소화하기 위해 우수관에 적체된 토사의 양을 예측할 수 있는 연구가 필요하며 적체된 토사와 콘크리트나 강관벽면이 복합된 우수관에 대한 조도계수를 보다 더 정확히 정량화 할 수 있는 연구가 수행되어야 할 것이다.

  • PDF

Analysis of Stress Distribution in the Hoop Test using Finite Element Method (유한요소법을 이용한 Hoop Test에서의 응력분포 해석)

  • 박형동
    • Tunnel and Underground Space
    • /
    • v.5 no.3
    • /
    • pp.230-239
    • /
    • 1995
  • 암석의 인장강도 실험법의 하나로써 새롭게 개발된 Hoop Test에 대한 이론적 뒷받침을 하고자 유한요소법을 사용하여 응력분포를 해석하였다. 간단하며 사용하기 편리한 실험장치이지만 시료가공시 생길 수 있는 내부공의 지름에 대한 오차, 재부공벽면과 하중장치외벽과의 마찰 등이 있어 이들로부터 발생할 오차를 평가해 보았다. 또한 시료의 안지름과 바깥지름의 비율이 응력의 크기에 끼치는 영향을 조사하였다. 응력해석결과, 일반적인 시료준바에 필요한 주의만 기울이면 실험치에 별다른 영향을 주지않는 것으로 제안되었고 이는 그동안의 실험결과의 신뢰성을 이론적으로 보충해 주었다.

  • PDF

The Characterization of Surface Roughness of the Drilled Shaft into Rock (암반에 근입된 현장타설말뚝의 벽면거칠기 특성)

  • Cho, Chun-Hwan;Lee, Myung-Hwan;Yoo, Han-Kyu;Kwon, Hyung-Gu;Park, Eon-Sang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.5-13
    • /
    • 2003
  • The domestic design method for the shaft resistance of drilled shafts into a bedrock is based on the empirical method, where the uniaxial compressive strength of rock specimen is utilized for calculation of the shaft resistance. This method has uncertainties in prediction of capacity of drilled shafts and result in uneconomic engineering design. Recently a new improved design method was suggested, which reflects important factors that affect the strength of pile sockets. Socket roughness is one of the significant factors influencing the shaft resistance of drilled shaft socketed into rock. In this paper roughness information for the shaft resistance design of socket pile was suggested on the basis of statistical analysis of data measured from wall surface in the bore holes of drilled shafts.

  • PDF

Infrared Signature Analysis of the Aircraft Exhaust Plume with Radiation Database (복사 데이터베이스를 활용한 항공기 배기 플룸 IR 신호 해석)

  • Cho, Pyung Ki;Gu, Bonchan;Baek, Seung Wook;Kim, Won Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.568-575
    • /
    • 2016
  • For the combat survivability, an infrared signature emitted from aircraft is needed to be predicted and analyzed. In this study, we studied the infrared signature from the exhaust plume from the viewpoint of Infrared(IR) detector. The Line-By-Line method using the radiation database is used for radiative property, and radiative intensity analysis is conducted along 1-D line of sight based on the radiative property. The numerical thermo-fluid field for the plume is conducted by ANSYS FLUENT, while setting the lines of sight having the different detection angle on the thermo-fluid field. We found the high IR signature on the line of sight passing through the locally high temperature region of the plume inside, and the strongest signature from the line of sight toward the nozzle surface. Based on this, it confirms the influence of the surface radiative emission on the infrared signature.

Measured Effect of Shock Wave on the Stability Limits of Supersonic Hydrogen-Air Flames (충격파가 초음속 수소-공기 화염의 안정한계에 미치는 영향)

  • Hwanil Huh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 1999
  • Measured shock wave effects were investigated by changing shock strength and position with particular emphasis on the stability limits of hydrogen-air jet flames. For this purpose, a supersonic nonpremixed, jet-like flame was stabilized along the axis of a Mach 2.5 wind tunnel, and wedges were mounted on the sidewall in order to interact oblique shock waves with the flame. This experiment was the first reacting flow experiment interacting with shock waves. Schilieren visualization pictures, wall static pressures, and flame stability limits were measured and compared to corresponding flames without shock-flame interaction. Substantial improvements in the flame stability limits were achieved by properly interacting the shock waves with the flameholding recirculation zone. The reason for the significant improvement in flame stability limits is believed to be the adverse pressure gradient caused by the shock, which can elongate the recirculation zone.

  • PDF

Investigation on the Turbulence Structure of Reattaching Separated Shear Layer Past a Two-Dimensional Vetrical Fenc(I) (2次元 垂直壁을 지니는 再附着 剝離 斷層 의 亂流構造 에 관한 硏究 (I))

  • 김경천;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 1985
  • Hot-wire measurements of second and third-order mean products of velocity fluctuations have been made in the separated, reattached, and redeveloping boundary layer behind a vertical fence. Mean velocity, wall static pressure distributions have also been measured in the whole flow field. Upstream of the reattachment point, the separated shear layer developes as a free mixing layer, but the gradient of the maximum slope thickness, turbulent intensities and the Reynolds shear stress are higher than that of the mixing layer due to initial streamline curvature and the effects of highly turbulent recirculating flow region. In the reattachment region, Reynolds shear stress and triple products near the surface is far more rapid than the decrease of the shear stress; that is the presence of the solid wall has a marked effect on the apparent gradient diffusivity of intensity or shear stress and throws doubts upon the usefulness of the simple gradient diffusivity model in this region.

A Study on the Flow Characteristics of a Sleeve-Jointed Adjusting Piece (슬리브 이음된 조정관에서의 유동 특성에 관한 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • The purpose of this study was to determine the optimal distances between pipes to minimize the pressure loss and turbulent intensity. This was accomplished by investigating the distances between sleeve-jointed pipes and the flow changes in pipes based on variations in the Reynolds (Re) number when installing adjusting pieces for the pipes. When the thickness tp of the sleeve-jointed piping was fixed at 5 mm and the pipe lengths Lp were 10, 50, 100, and 200 mm, the correlations with the velocity of the sleeve-jointed part, pressure distribution, length of the reattachment point in the recirculation area, and Re number were analyzed. The flow characteristic of the sleeve-jointed part from a laminar to a turbulent flow region was determined by setting the Re range to 200 ≤ Re ≤ 5,000. This was done by utilizing Ansys Fluent 18.1, which is a commercial program. The enlargement and contraction ratios of the sleeve-jointed part were 1.2 and 0.83, respectively, and the turbulent intensity of the sleeve downstream edge and pressure change both increased as the Re number increased while Lp remained constant. The fact that the flow on the sleeve wall surface was disturbed by tp resulted in losses in velocity energy. Therefore, the edge of the sleeve-jointed part was also effected. When Lp was 10 mm or less, the turbulent intensity of the edge part did not change significantly as the Re number increased. The reattachment point in the recirculation area did not appear at Lp of 10 mm or less and was not affected by the vortex. In the case of 3,000 ≤ Re, the reattachment length of the wall surface of the sleeve-jointed part was nearly constant as Lp increased.

A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire (도로터널 화재시 연기의 전파특성과 구조체에 미치는 영향에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Oh, Byung-Chil;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.289-300
    • /
    • 2013
  • This study numerically considered the characteristic of smoke movement and the effect of hot smoke gas on tunnel wall surface temperature during road tunnel fire under boundary condition of fire growth curve that is applied to fire analysis in road tunnels. The maximum heat release rate were 20 MW and 100 MW and tunnel air velocities were 2.5 m/s and velocity induced by thermal buoyancy respectively, also the cooling effect of tunnel wall was considered. As results, when tunnel air velocity was constant at 2.5 m/s during tunnel fire, due to the cooling effect of tunnel wall, the smoke layer was rapidly descent after some distance and it flowed the same patterns at the downstream. When heat release rate was 100 MW (and jet fan was not installed), the maximum temperature of tunnel wall surface has risen up to $615^{\circ}C$. The heat transfer coefficient of tunnel wall surface was varied from 13 to $23W/m^2^{\circ}C$ approximately.

Experimental Study on the Turbulent Flow Field in a Sudden Expansion-Contraction Pipe Joint (급확대-축소 연결부 주변의 원관 난류유동에 관한 실험적 연구)

  • 박병서;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1269-1281
    • /
    • 1989
  • 본 연구에서는 H를 고정하고 L을 변화시켜가며 내부의 유동구조가 어떻게 변하는가를 살펴보고, 특히 재부착이 일어나는 경우에는 급확대 부분만 존재하는 기존 실험결과와 비교분석하여 하류의 급축소부분이 전체 유동구조에 어떤 영향을 미치는가를 살펴보고자 한다. 실험에서 사용된 작동유체는 공기이며, 입구관 직경은 110mm, 급확대점과 급축소점사이의 연결부 직경은 220mm, 연결부의 길이는 L=300, 600 그리고 900mm의 3가지를 선택하였으며 기준속도는 입구관의 중심속도로 9.71 m/s이다. 입구직경(110mm)을 기준으로 한 Reynolds 수는 $R_{e}$=73,000 이고 입구관반경과 연결부반경의 차이인 계단높이(H=55mm)를 기준으로 하면 $R_{e=36}$ ,500이다. 연결부 의 급확대부분에서 입구관반경을 기준으로 한 반경확대비는 2이고 급축소부분의 반경 축소비는 1/2이다. 측정항목은 유동방향의 벽면압력분포, 유동방향의 평균속도분포 및 난류강도 등이며, L=900mm인 경우는 반경방향과 원주방향의 난류강도, Reynolds 전단응력도 측정되었다.