• Title/Summary/Keyword: 벤젠-물 양이온

Search Result 13, Processing Time 0.022 seconds

Catalytic Combustion of Benzene over Metal Ion-Substituted Y-Type Zeolites (금속이온이 치환된 Y형 제올라이트에서 벤젠의 촉매연소반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 2016
  • Catalytic combustion of benzene over various metal cation-exchanged zeolites has been investigated. Y(4.8)-type zeolite showed the highest activity among the used zeolites and Cu/Y(4.8) catalyst also showed the highest activity among metal cation/ Y(4.8) zeolites. The catalytic activity increased according to the amount of adsorbed oxygen acquired from O2 TPD results. The catalytic activity also increased with an increase of Cu cation concentration on Cu/Y(4.8) catalysts. The conversion of benzene on the combustion reaction depended on not benzene concentration but the oxygen concentration. In addition, the introduction of water into reactants decreased the catalytic activity.

Reactions of Trimethylbenzenes over Mordenite Catalysts (모더나이트 촉매상에서 트리메틸벤젠의 반응)

  • Byoung Joon Ahn;Hak Ze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.166-171
    • /
    • 1981
  • The reactions of trimethylbenzenes were investigated over dealuminated, cation-exchanged mordenite catalysts. Higher reaction temperature favored the formation of disproportionation products. In the reaction of 1,2,4-trimethylbenzene, the formation of 1,3,5-trimethylbenzene and the disproportionation products decreased sharply with reaction time. The product distribution, especially the distribution of trimethylbenzenes, suggests that the effective pore diameter of Ba-exchanged dealuminated mordenite catalysts lies somewhere between 8.1 and 8.6${\AA}$.

  • PDF

The Initiation Mechanism in the Polymerization of Trioxane with Titanium Tetrachloride (Ti$Cl_4$에 의한 Trioxane의 양이온 중합에 있어서 개시 반응기구)

  • Han Man Jung
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.423-430
    • /
    • 1978
  • The initiation mechanism of trioxane polymerization catalyzed by Ti$Cl_4$ in nitrobenzene was investigated. The kinetic studies revealed that the rate of polymerization was drastically decreased by the addition of a minute amount of water or methanol. A third substance as cocatalyst was not required for the polymerization. Measurements of dielectric constants gave no evidence for the zwitterionic mechanism of the polymerization. The electric conductivity measurements of polymerization system and the initiator solution showed that the initiation was started by Ti$Cl_3^+$ cation, formed by a disproportionation of the initiator in nitrobenzene.

  • PDF

Reactions of Thianthrene Cation Radical Perchlorate with N-Arylbenzene- and N-Aryl-p-toluenesulfonamides. Synthesis of 5-(p-N-Arylbenzenesulfonamidephenyl)- and 5-(p-N-Aryl-p-toluenesulfonamidophenyl)thianthrenium Perchlorate (티안트렌 양이온 자유라디칼 과염소산염과 N-아릴벤젠술폰아미드 및 N-아릴-p-톨루엔술폰아미드의 반응. 5-(p-N-아릴술폰아미드페닐)티안트렌이움 과염소산염과 5-(p-N-아릴-p-톨루엔술폰아미드페닐)티안트렌이움 과염소산염의 합성)

  • Sung Hoon Kim;Kyongtae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.383-389
    • /
    • 1981
  • Thianthrene cation radical perchlorate reacts with N-arylsulfonamides such as p-toluenesulfonanilide, benzenesulfonanilide, N-(2-methylphenyl)benzenesulfonamide, and N-phenyl-p-toluenesulfonanilide to give 5-(p-N-p-toluenesulfonamidophenyl)-(1a), 5-(p-N-benzenesulfonamidophenyl)-(1b), 5-(4-N-benzenesulfonamido-3-methylphenyl)-(1c), and 5-(p-N-phenyl-N-p-toluenesulfonamidophenyl thianthrenium perchlorate (1d), respectively. In the meantime, 1d reacts further with thiathrene cation ratical to form diperchlorate(1e). The structure of 1a~1e is very similar to 5-(p-acetamidophenyl) thianthrenium perchlorate which has been obtained from the reaction with acetanilide. However, the discrepancy in the stoichiometry between two reactions indicates that the reaction with sulfonamide appears not to proceed with a single mechanism.

  • PDF

Reaction of Thianthrene Cation Radical Perchlorate with Thioxanthene. Synthesis of Thioxanthene Derivatives (티안트렌 양이온 자유라디칼과 염소산염과 티오크잔틴의 반응. 티오크잔틴 유도체의 합성)

  • Kyongtae Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 1980
  • The reaction of thianthrene cation radical perchlorate with thioxanthene in acetonitrile gave thianthrene and dark reddish thioxanthylium ion instead of thioxanthene cation radical. Addition of aromatic nucleophiles such as anisole, aniline, N,N-diethylaniline, catechol, ethylbenzene, to the above mixture yielded the corresponding thioxanthenes with substituent at 9 position. Reactions with dibenzo-18-crown-6-ether, diphenylmercury, and triphenylphosphine gave similar products. However, reactions with aromatics with electron-withdrawing group were either too slow or inert to such a reaction.

  • PDF

Theoretical Investigation for the Molecular Structure and Binding Energies of C6H6+-(H2O)n (n=1-5) Complexes (벤젠양이온-물 복합체[C6H6+-(H2O)n (n=1-5)]의 결합 에너지 및 분자 구조에 관한 이론적 연구)

  • Kim, Si-Jo;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.671-679
    • /
    • 2010
  • The geometrical parameters and binding energies of the benzene ion-water complex [$C_6H_6^+-(H_2O)_n$(n=1-5)] have been investigated using ab initio (MP2) and density functional theory (DFT) with large basis sets. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the binding energies. The predicted binding energy of 8.6 kcal/mol for $C_6H_6^+-(H_2O)$ at the MP2/aug-cc-pVTZ level of theory is in excellent agreement with recent experimental result of $8.5{\pm}1$ kcal/mol.

Effect of Transition Metal Ion on the Reaction of Benzylbromide with Grignard Reagent (Grignard 시약과 브로모벤질과의 반응에서 첨가전이 금속이온의 영향 연구)

  • Jack C. Kim;Young-Sim Koh;Ung-Chan Yoon;Min-Sook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.2
    • /
    • pp.228-236
    • /
    • 1993
  • The effect of ferric ion on the reaction of CH_3$MgI with benzylbromide was investigated by determining the product ratio between cross-coupling product, ethylbenzene (A) and homocoupling product, bibenzyl (B) in the presence of ferric ion. When CH_3$MgI prepared with pure magnesium was used, the ratio of A to B was 22 to 78 and with reagent grade magnesium, the ratio became 33 to 67 indicating that metallic impurities in magnesium affect the reaction mechanism to lead less homocoupling product, B. The ratio changes became significant when ferric chloride was added in the reaction mixture in catalytic amounts and the ratio of A to B reached to 80 to 20 at maximum. The reaction in the presence of ferric ion seems to follow mainly an ionic mechanism which involves iron-benzyl bromide ${\pi}$-complex formation. The complex formation is expected to be able to enhance ionic attack of CH_3$MgI on benzyl carbon to give more A.

  • PDF

Reactions of m-Xylene over Mordenite Catalysts (모더나이트 촉매에서의 m-크실렌의 반응)

  • C. H. Yune;B. J. Ahn;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.26-29
    • /
    • 1981
  • Reactions of m-xylene were studied in a fixed-bed type micropulse reactor over cation-exchanged dealuminated mordenite and zeolite Y catalysts. Over H-mordenite catalysts higher catalyst pretreatment temperature as well as dealumination resulted in the increase of the formation of disproportionation product. $Ba^{2+}- and Mg^{2+}-$exchanged mordenite catalysts showed the shape selectivity in the disproportionation reaction of m-xylene, that is, the formation of trimethylbenzene decreasing sharply as the degree of cation exchange increased.

  • PDF

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants (이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성)

  • Cho, Jung-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

일치환된 방향족 고리의 NO2+ 치환반응에서의 반응성과 지향성에 관한 연구

  • Nam, Yeon-Sik;Kim, Seon-Gyeong;Jo, Dae-Heum
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.40-47
    • /
    • 2015
  • 본 연구에서는 일치환된 방향족 화합물의 $NO_2{^+}$ 치환반응에서의 반응성 (reactivity)과 지향성 (regioselectivity)에 대해 분석하였다. 기존의 연구에 따르면, 방향족 고리와 치환체 사이의 ${\sigma}$ 결합을 통한 유발효과와 ${\pi}$ 결합을 통한 공명효과로 인해 벤젠 고리의 전자 분포가 증가하게 되면 반응성이 증가하는 것으로 알려져 있다. 또한 반응중간생성물인 탄소양이온의 안정성을 통해 지향성을 확인할 수 있는 것으로 알려진 바가 있다. 이에 따라, 본 연구에서는 반응성과 지향성이 실험적으로 잘 알려진 7가지의 치환기 (OH, $OCH_3$, $CH_3$, Cl, COOH, CN, $NO_2$)를 선정하여 DFT functional인 B3LYP를 사용하여 natural bond orbital (NBO) 계산을 하였고, 각각의 일치환된 벤젠 고리가 갖는 전자 분포를 ${\sigma}$${\pi}$ 전자로 나누어서 보기로 했다. 그 결과, 일치환된 방향족 고리 치환반응의 반응성과 지향성은 ${\sigma}$ 결합을 통한 유발효과에 의해서는 영향을 받지 않고, 공명 효과로 인한 반응물의 ${\pi}$ 전자 분포에 의해 결정되는 것을 확인할 수 있었다. 이외에도 반응성을 비교 하기 위해 친핵체로 작용하는 일치환된 방향족 고리의 highest occupied molecular orbital(HOMO) 에너지와 친전자체인 $NO_2{^+}$의 lowest unoccupied molecular orbital (LUMO) 에너지의 차이를 비교하였으며, 친핵체의 HOMO 에너지가 높을수록 반응성이 커짐을 알 수 있었다.

  • PDF