Browse > Article
http://dx.doi.org/10.5012/jkcs.2010.54.6.671

Theoretical Investigation for the Molecular Structure and Binding Energies of C6H6+-(H2O)n (n=1-5) Complexes  

Kim, Si-Jo (Department of Chemistry, HanNam University)
Kim, Seung-Joon (Department of Chemistry, HanNam University)
Publication Information
Abstract
The geometrical parameters and binding energies of the benzene ion-water complex [$C_6H_6^+-(H_2O)_n$(n=1-5)] have been investigated using ab initio (MP2) and density functional theory (DFT) with large basis sets. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies have been considered to predict the binding energies. The predicted binding energy of 8.6 kcal/mol for $C_6H_6^+-(H_2O)$ at the MP2/aug-cc-pVTZ level of theory is in excellent agreement with recent experimental result of $8.5{\pm}1$ kcal/mol.
Keywords
$C_6H_6^+-(H_2O)_n$; DFT; Binding energy;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Solca, N.; Dopfer, O. J. Phys. Chem. A. 2003, 107, 4046.   DOI
2 Miyazaki, M.; Fujii, A.; Mikami, N. J. Phys. Chem. A. 2004, 108, 8269.   DOI
3 Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. J. Phys. Chem. A. 2004, 108, 10656.   DOI
4 Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Chem. Phys. Lett. 2004, 399, 412.   DOI
5 Shimizu, M.; Yamashita, E.; Mitani, M. Yoshioka, Y. Chem. Phys. Lett. 2006, 432, 22.   DOI
6 Becke, A. D. J. Chem. Phys., 1993, 98, 5648.   DOI
7 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision A; Gaussian, Inc.: Pittsburgh, PA, 2003.
9 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
10 Woon, D. E.; Park, J.-Y. Astrophys. J. 2004, 607, 342.   DOI
11 Ibrahim, Y. M.; Meot-Ner, M.; Alshraeh, E. H.; EI-Shall, M. S.; Scheiner. S. J. Am. Chem. Soc. 2005, 127, 7053.   DOI
12 Pribble, R. N.; Zwies, T. S. Science. 1994, 265, 75.   DOI
13 Pribble, R. N.; Garrett, A. W.; Haber, K.; Zwier, T. S. J. Chem. Phys. 1995, 103, 531.   DOI
14 Tachikawa, H.; Igarashi, M. J. Phys. Chem. A. 1998, 102, 8648.   DOI
15 Hagemeister, F. C.; Gruenloh, C. J.; Zwier, T. S. J. Chem. Phys. 1998, 239, 83.   DOI
16 Feller, D. J. Phys. Chem. A. 1999, 103, 7558.   DOI
17 Courty, A.; Mons. M.; Dimicoli, I.; Piuzzi. F.; Gaigeot, M.-p.; Brenner, V.; de Pujo, P.; Millie, P. J. Phys. Chem. A. 1998, 102, 6590.   DOI
18 Tachikawa, H.; Igarashi, M.; Ishibashi, T. Phys. Chem. Chem. Phys. 2001, 3, 3052.   DOI   ScienceOn
19 Houk, K. N. J. Phys. Chem. A. 2004, 108, 3756.   DOI
20 Luo, Y.; Maeda, S.; Ohno, K. J. Comput. Chem. 2008, 30, 952.
21 Karthikeyan, S.; Park, M.; Shin, I.; Kim K. S. J. Phys. Chem. A. 2008, 112, 10120.   DOI
22 Min, S. K.; Lee, E. C.; Lee, H. M.; Kim, D. Y.; Kim D. W.; Kim, K. S. J. Comput. Chem. 2008, 29, 1221.
23 Karthikeyan, S.; Singh, J. N.; Park, M.; Kumar, R.; Kim, K. S. J. Chem. Phys. 2008, 128, 244304-1.   DOI
24 Solca, N.; Dopfer, O. Chem. Phys. Lett. 2001, 347, 59.   DOI
25 Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Chem. Phys. Lett. 2001, 349, 431.   DOI
26 Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Phys. Chem. Chem. Phys. 2003, 5, 1137.   DOI   ScienceOn
27 Hobza, P.; Zahradnik, R. Intermolecular Complexes: The role of van der Waals Systems in Physical Chemistry and in the Biodisciplines; Elsevier, Amesterdam, 1988.
28 Conway, B. E. Ionic Hydration in Chemistry and Biophysics; Elsevier: Amsterdam, New York, 1981.
29 Kennedy, J. P.; Marechal, E. Carbocationic Polymerization; John Wiley& Sons: New York, 1982.