• Title/Summary/Keyword: 벤젠의 연소반응

Search Result 8, Processing Time 0.025 seconds

Catalytic Combustion of Benzene over Metal Ion-Substituted Y-Type Zeolites (금속이온이 치환된 Y형 제올라이트에서 벤젠의 촉매연소반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.161-167
    • /
    • 2016
  • Catalytic combustion of benzene over various metal cation-exchanged zeolites has been investigated. Y(4.8)-type zeolite showed the highest activity among the used zeolites and Cu/Y(4.8) catalyst also showed the highest activity among metal cation/ Y(4.8) zeolites. The catalytic activity increased according to the amount of adsorbed oxygen acquired from O2 TPD results. The catalytic activity also increased with an increase of Cu cation concentration on Cu/Y(4.8) catalysts. The conversion of benzene on the combustion reaction depended on not benzene concentration but the oxygen concentration. In addition, the introduction of water into reactants decreased the catalytic activity.

Combustion Characteristics of Benzene over $LaMnO_3$ Perovskite-type Catalysts Prepared Using Microwave-assisted Process (마이크로파 공정으로 제조된 $LaMnO_3$ 페롭스카이트형 촉매에서 벤젠의 연소반응)

  • Jung, Won Young;Hong, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.507-512
    • /
    • 2013
  • Perovskite-type oxides were successfully prepared using microwave-assisted process, and by XRD, XPS, BET, and $H_2-TPR$. Their catalytic activities for the combustion of benzene were also examined. Most of catalysts studied showed the perovskite crystalline phase with the particle size of 21~35 nm. The $LaMnO_3$ catalyst showed the highest activity and the conversion reached almost 100% at $250^{\circ}C$. The catalysts prepared by microwave-assisted process showed higher activity compared to those prepared sol-gel method. In addition, the catalytic activity was increased with an increase of calcination temperature of $LaMnO_3$-type catalyst. The TPR results on the measurement of redox property showed a good correlation with the order of catalytic activity on the benzene combustion reaction.

Catalytic Combustion of Benzene over Perovskite-type Oxides Prepared Using Malic Acid Method (능금산법으로 제조된 페롭스카이트형 산화물에서 벤젠의 촉매연소반응)

  • Jung, Won-Young;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Perovskite-type oxides were successfully prepared using malic acid method, characterized by TG/DTA, XRD, XPS, TEM and $H_2$-TPR and their catalytic activities for the combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 15-70 nm particle size. The $LaMnO_3$ catalysts showed the highest activity and the conversion reaches almost 100% at $350^{\circ}C$. The catalysts were modified to enhance the activity through substitution of metal into the A or B site of the perovskite oxides. In the $LaMnO_3$-type catalyst, the partial substitution of Sr into site the A-site enhanced the catalytic activity in the benzene combustion. In addition, the partial substitution of Co or Cu into site the B-site also enhanced the catalytic activity and the catalytic activity was in the order of Co > Cu > Fe in the $LaMn_{1-x}B_xO_3$ (B = Co, Fe, Cu) type catalyst.

Complete Combustion of Benzene over CuO/CeO2 Catalysts Prepared by Various Methods (다양한 방법으로 제조된 CuO/CeO2 촉매에서의 벤젠의 연소반응)

  • Jung, Won Young;Song, Young In;Hong, Seong-Soo
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.128-133
    • /
    • 2013
  • Catalytic combustion of benzene over $CeO_2$-supported copper oxides has been investigated. The supported copper oxides catalysts were prepared using ball mill method and characterized by XRD, FT-IR, TEM and TPR. In the CuO/$CeO_2$ catalysts prepared using ball mill method, highly dispersed copper oxide species were shown at high loading ratio. The CuO/$CeO_2$ prepared using ball mill method showed the higher activity than those prepared using impregnation method. The catalytic activity increased with an increase in the CuO loading ratio, 10 wt% loaded CuO/$CeO_2$ catalyst giving the highest activity. In addition, the promoting of 10 wt% loaded CuO/$CeO_2$ catalyst with $Fe_2O_3$ and CoO enhanced the dispersion of CuO and then increased the catalytic activity.

Sensitized effects of photo-sensitized oxidation in water under UV irradition (수용액에서 UV를 이용한 광증감 산화반응시 증감제에 따른 증감효과에 관한 연구)

  • Lee, Chun Sik;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1998
  • Photo-sensitized oxidation of benzene in aqueous solution was conducted with persulfate, nitrate, nitrite, sulfate and chloride as sensitizers.In the photo-sensitized oxidation of benzene persulfate, nitrate and nitrite could act as sensitizers, while no detectable effects could be observed with sulfate and chloride. With increasing nitrite concentration the photo-sensitized oxidation of benzene ran through a maximum value and decreased thereafter with increasing nitrite concentration. A build-up of nitrite ions seemed to scavenge hydroxyl radicals. When nitrite was present with other ions, nitrite inhibited the photo-sensitized oxidation of benzene. Phenol and biphenyl were identified as intermediate.

  • PDF

Catalytic Combustion of Benzene over CuO-CeO2 Mixed Oxides Prepared by Co-precipitation Method (침전법으로 제조된 CuO-CeO2 혼합산화물에서 벤젠의 촉매연소반응)

  • Hong, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.312-317
    • /
    • 2014
  • Catalytic combustion of benzene over CuO-$CeO_2$ mixed oxides prepared by co-precipitation method were investigated. The CuO-$CeO_2$ mixed oxides were also prepared using different precipitant and CuO precursor. They were characterized by XRD, BET, XPS and $H_2-TPR$. In the CuO-$CeO_2$ catalysts, characteristic copper oxide peaks were shown at $2{\Theta}=35.5^{\circ}$ and $38.5^{\circ}$ regardless of the precipitant. The Cu0.35 catalyst prepared using $NH_4OH$ as a precipitant revealed the highest activity on the combustion of benzene. In addition, the pretreatment with hydrogen enhanced the catalytic activity and the catalyst reduced at $400^{\circ}C$ showed the highest activity on the combustion of benzene.

A Short Kinetic Mechanism for Premixed Flames of Aromatic Compound : Benzene (방향족 화합물 화염의 축소 반응 메카니즘 개발 : 벤젠)

  • Lee, Ki Yong
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.161-164
    • /
    • 2015
  • A short kinetic mechanism for premixed benzene/air flames was developed with a reduction method of Simulation Error Minimization Connectivity Method(SEM-CM). It consisted of 38 species and 336 elementary reactions. Flame speeds were calculated and compared with those from full mechanisms and experiments of other researcher. Those comparisons are in good agreement between the full mechanism and the short mechanism at high pressure condition. In numerical work the running time with the short mechanism was over 10 times faster than one with the full mechanism.

  • PDF

A Short Kinetic Mechanism for Premixed Flames of Aromatic Compound : Benzene (방향족 화합물 화염의 축소 반응 메카니즘 개발 : 벤젠)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.49-55
    • /
    • 2015
  • A short kinetic mechanism for premixed benzene/air flames was developed with a reduction method of Simulation Error Minimization Connectivity Method(SEM-CM). It consisted of 38 species and 336 elementary reactions. Flame speeds were calculated and compared with those from full mechanisms and experiments of other researchers. Flame temperature, the heat release rate, the concentration profiles of major species and radicals were also calculated with both mechanism. Those comparisons are in good agreement between the full mechanism and the short mechanism at high pressure condition. In numerical work the running time with the short mechanism was over 12 times faster than one with the full mechanism.