본 논문에서는 다중 셀 상향링크 네트워크에서 합 용량을 크게 개선할 수 있는 에너지 효율적 기회적 간섭 정렬 기술을 소개한다. 각 사용자는 요구되는 신호 질을 만족하면서 타 셀 기지국에게 발생하는 간섭량을 최소화하는 측면에서 최적의 송신 벡터 설계 및 전력 제어를 수행한다. 주요 결과로써, 줄어든 간섭 레벨로 인하여 제안하는 기회적 간섭 정렬 기술은 전력 제어가 없는 기존 기회적 간섭 정렬보다 대부분의 신호 대 잡음 비 영역에서 더욱 높은 합 용량을 취득할 수 있음을 보인다. 뿐만 아니라, 제안하는 기회적 간섭 정렬 기술과 함께 수신 단에서 zero-forcing 검파 및 minimum mean square error (MMSE) 검파기를 사용할 경우 둘 사이 성능 비교를 수행하고, MMSE 검파 기반 기회적 간섭 정렬 기술이 우수한 성능을 취득할 수 있음을 보인다.
텐세그리티 구조시스템의 한 종류인 케이블 돔 시스템은 케이블과 마스트로 이루어져 있다. 이 케이블에 외부하중이 가해지지 않은 상태에서 안정된 구조물이 되기 위하여 일정의 프리텐션이 가해져야 하며 구조물은 가해진 프리텐션 하에서 자기평형응력상태에 있어야 한다. 본 연구에서는 부재의 내력 벡터의 합 원리를 기초하여 자기평형 응력모드를 구하는 새로운 방법을 제안하였으며, 자기평형응력을 유지하기 위해 필요한 응력모드를 시각화할 수 있다는 점이 기존의 논문과 비교하여 독특성을 갖는다. 본 연구에서 제안된 방법에서 사용된 기본 원리는 모든 절점에서 외부하중이 가해지지 않은 상태에서 내력벡터의 합은 0이 되어야 한다는 것이다. 제안된 방법은 CAD를 이용하여 간단히 자기 평형응력모드를 찾을 수 있으며, 예제 케이블 돔 구조물을 대상으로 각 절점에 연결된 부재들의 내력을 결정하였다. 결과 값은 역학적 계산 방법과 기존의 이론에 의해 검증하였으며 잘 일치하였다.
본 논문에서는 영상 인식 환경에서 영상 정렬에 필요한 회전각 추정 방법 중 낮은 사양의 임베디드 기반 환경에 적용 가능한 방법을 제안하고 기존의 복소 모멘트를 이용하는 방법과 비교하였다. 제안된 방법은 영상을 극좌표로 변환한 후 거리축 방향으로 투영된 1차원 프로파일의 유사도 매칭을 통하여 회전각을 추정한다. 추가로 연산을 더 단순화시킨 투영 프로파일의 벡터합을 이용하는 방법을 선택할 수도 있다. 이진 패턴 영상과 흑백 명암영상을 대상으로 진행한 실험을 통하여 제안된 방법의 추정 오차가 기존의 복소 모멘트를 이용하는 방법과 큰 차이가 없으며 보다 적은 연산과 낮은 시스템 자원이 요구됨을 보였다. 추후 확장을 위하여 흑백 명암영상에서 회전 중심을 일치시키는 방법에 관한 연구가 필요할 것이다.
블록 기반 프레임 레이트 변환 (frame-rate conversion) 또는 필름 떨림 보상 (film judder compensation)을 수행하기 위해서는 참 움직임 벡터(true motion vector)를 찾아야 한다. 이를 위해서 현재 블록의 공간적 및 시간적 상관성을 최대로 하여 시각적으로 덜 부자연스럽게 느끼도록 하는 방법들이 연구되었다. 그러나 기존의 블록단위 절대값 차이의 합 (SAD)만으로는 비정형성 객체의 움직임 에러를 추정할 수 없었다. 본 논문에서는 비정형성 객체가 등속운동을 하는 경우 재귀적으로 기존의 움직임을 유지하도록 하는 방법을 제안하였다. 현재 블록의 등속움직임 추정값을 재귀평균으로 구하였으며 현재 블록 벡터의 신뢰도를 계산하여 원래의 움직임 벡터와 재귀평균 움직임 벡터중에서 가중치를 두도록 하였다. 실험결과 비정형성 등속운동 객체의 움직임을 블록기반으로 추정함을 확인할 수 있었다.
본 논문에서는 2D-DCT와 EHMM 알고리즘을 이용하여 과적합에 강인한 얼굴 표정인식 방법을 고안하였다. 특히, 본 논문에서는 2D-DCT 특징추출을 위한 윈도우 크기를 크게 설정하여 EHMM의 관측벡터를 추출함으로써, 표정인식 성능 향상을 도모하였다. 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었고, 실험 결과로부터 특징추출 윈도우의 크기가 커질수록 표정 인식률이 향상됨을 확인하였다. 또한, CK 데이터베이스를 이용하여 표정 모델을 생성하고 JAFFE 데이터베이스 전체 샘플을 테스트한 결과, 제안 방법은 87.79%의 높은 인식률을 보였으며, 기존의 히스토그램 특징 기반의 표정인식 접근법보다 46.01~50.05%의 향상된 인식률을 보였다.
Journal of the Korean Data and Information Science Society
/
제24권5호
/
pp.989-998
/
2013
최근 산/학계에서 주목받고 있는 빅 데이터는 정의상 한꺼번에 자료를 메모리에 올려 분석할 수 없기 때문에 기존의 데이터마이닝 시대에 개발된 일괄처리 (batch processing) 방식의 알고리즘을 적용할 수 없게 된다. 따라서 가장 시급히 해결해야 하는 문제는 기존의 여러 가지 기계학습방법을 빅 데이터에 적용할 수 있도록 분산처리 (distributed processing)를 수행하는 적절한 알고리즘을 개발하는 것이라 볼 수 있다. 본 논문에서는 분류문제에서 각광받는 지지벡터기계 (support vector machines)의 여러 알고리즘을 살펴보고자 한다. 특히 빅 데이터 분류문제에 유용할 것으로 예상되는 온라인 타입 알고리즘과 병렬처리 알고리즘에 대하여 소개하고, 이러한 알고리즘들의 성능 및 장단점을 선형분류에 대한 모의실험을 통해서 살펴본다.
본 논문에서는 셀룰러 환경에서 셀 간 간섭을 완화시키기 위한 부분공간 간섭 정렬 방법을 실제 시스템에 적용할 때 발생하는 채널 분리 오차와 채널 추정 오차에 따른 성능 열화를 개선시키기 위한 수신단 직교화를 통한 간섭 정렬 방법을 제안하였다. 제안된 방법은 셀 마다 서로 직교하는 참조 벡터를 사용함으로써 채널 분리 오차와 채널 추정 오차에 인해 남아있는 간섭신호를 줄여준다. 전산 모의 실험을 통해 채널 추정 오차가 발생하는 환경에서 제안된 방법을 통해 기존의 방법에 비해 향상된 합용량을 얻을 수 있었다.
음원 위치 추정은 여러 방면에서 쓰임이 있는 응용 기술이다. 음원의 위치를 추정하기 위한 기본 기법 중에는 시간 지연 추정 기법이 있다. 이 기법에선 음원의 위치를 추정하기 위해서 두 개 또는 그 이상의 수신기에 들어오는 신호간의 상대적 시간 지연을 알아내야 한다. 시간 지연 추정 기법에는 일반화 된 상호 상관(Generalized Cross-Correlation, GCC) 대표적이지만, 정준형 상관 분석(Canonical Correlation Analysis, CCA)을 이용한 방법도 있다. 본 논문에서는 시간 지연 추정용 정준형 상관 분석의 고유벡터의 희소성을 이용하기 위해 새로운 알고리즘을 제안한다. 이를 위해서 로그-합(log-sum) 정규화를 이용한다. 본 논문에서는 서로 다른 여러 신호 대 잡음비 환경 하에서 비교 모의실험을 하였고, 이 비교 실험을 통하여 얻는 데이터를 통해서 제안한 새 정준형 상관 분석 기반 알고리즘이 이전의 정준형 상관분석 기반 알고리즘이나 기존 GCC보다 더 우수하다는 것을 보인다.
축산폐수는 축사가 대부분 상수원보다 상류지역에 산재하고 있어 이를 효과적으로 관리하기 어려우나, 연속 회분식 반응기(Sequencing Batch Reactor, SBR)는 장치가 간단하고 경제성이 우수하여 축산폐수처리에서 효율적으로 적용될 수 있다. 본 연구에서는 DO(Dissolved Oxygen)과 ORP(Oxidation-Reduction Potential)을 이용하여 지식기반 고장진단 시스템을 제안하였다. 실시간으로 얻어진 ORP, DO값들을 전처리하여, [ORP], [DO]외에 [ORP DO]합성data와 ORP, DO의 특징벡터의 합에서 얻어진 fusion data의 총 4개의 data set을 이용하여 각각에 대한 진단과 분류성능을 검토하였다. 이 값을 이용하여 FCM (fuzzy C-mean) 클러스터링 한 후, K-PCA과 LDA로 차원축소시켜 특징벡터를 추출하였다. 그리고 Hamming distance로 test data와 특징벡터의 거리를 계산하여 각 class를 F1에서 F8까지 분류하였다. 그 결과 데이터를 그대로 이용하는 것 보다 차분데이터형태로 이용하는 것이 우수했으며 그 중 fusion 데이터의 결과가 다른 것들보다 향상된 결과를 보였다. 그리고 K-PCA와 LDA를 결합한 결과가 다른 방법에 비해 우수한 결과를 보였으며 fusion method를 이용한 최고인식율은 98.02%를 나타내었다.
본 연구에서는 ATM 보안 시스템을 위한 DCT와 신경망 기반 모델 인증 알고리즘을 제안한다. CCD 카메라를 이용하여 일정한 조도와 거리에서 30명의 얼굴영상을 획득한 후 데이터 베이스를 구성한다. 모델 인증 실험을 위해 동일인에 대해 학습영상 4장 그리고 실험 영상 4장을 각각 획득한다. 얼굴영상의 에지를 검출한 후 에지 분포에 의해 얼굴영상에서 사각형태로 특징영역을 검출한다. 특징영역에는 눈썹, 눈, 코, 입, 그리고 뺨이 포함된다. 특징영역에 대해 DCT를 수행한 후 대각방향의 계수 합을 구해 특징벡터를 추출한다. 특징벡터는 정규화되어 신경망의 입력 벡터가 된다. 패스워드를 고려하지 않는 경우, 데이터 베이스를 검색한 결과 학습된 얼굴영상에 대해서는 100%의 인증율을 나타내었고 학습되지 않는 얼굴영상의 경우에는92%의 인증률을 나타내었다. 그러나 패스워드를 고려한 경우 모두 100%의 인증율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.