일반적으로 3차원 메시 모델은 많은 정점(vertex)과 다각형으로 이루어져 있을 뿐만 아니라 정점 위치 각각은 3차원 좌표에서 세 개의 32비트 부동소수점수로 표현되기 때문에, 모델을 표현하기 위해 필요한 데이터 량은 매우 많다. 따라서 3차원 모델을 효과적으로 저장 및 전송하기 위한 압축 기법은 필수적으로 요구된다. 이를 위해 본 논문에서는 예측 잉여신호 벡터 양자화를 이용한 3차원 모델 압축 기법을 제안한다. 기본적인 개념은 3D 모델을 이루는 서로 인접한 정점 위치들간에 존재하는 높은 상관도와 정점 위치 자체가 지니는 벡터 특성에 근거한다. 실험 결과에 따르면 제안한 방법이 기존의 압축 방법에 비해 높은 압축율을 얻을 수 있으며 정점 위치 정보를 점진적으로 전송할 수 있는 장점을 지닌다.
영상간의 유사도는 일반적으로 영상으로부터 추출한 특징벡터간의 벡터공간상의 거리를 계산해서 판단한다. 그러나 이러한 특징벡터가 유사도 계산을 위한 하나의 방법이지만 항상 인간의 유사도 개념을 충실히 반영하지는 않는다. 그러므로 현존하는 대부분의 영상검색시스템들은 각 특징간의 중요도를 선정하여 유사도에 반영하는 방법을 사용하고 있다. 본 논문에서는 영상검색을 위한 새로운 초기 가중치 설정과 갱신 알고리즘을 제안한다. 이를 위해서 먼저 데이터 베이스 영상을 인간의 인지도 판단에 의해 그룹화 한 후, 내부질의와 외부질의를 수행하고, 검색된 영상중 유사한 영상이 어느 그룹에 속하는지 알아내어 각 영상별로 유사도 계산에 필요한 최적 특징 가중치를 계산한다. 2000개의 영상 데이타에 대한 실험을 통해서 제안된 알고리즘의 우수성을 보인다.
본 논문은 분류된 학습률을 이용한 고속 경쟁 학습에 대한 연구이다. 이연구의 기본 개념은 각 출력 노우드의 연결강도 벡터에 분류된 학습률을 할당하는 것이다. 출력 노우드의 각 연결강도 벡터는 자기 자신의 학습률에 의하여 갱신된다. 각 학습률은 관련되는 출력 노우드가 경쟁에서 승리할 때에만 변화되며, 승리하지 못한 노우드들의 학습률은 변화되지 않는다. 영상 벡터 양자화에 대하여 실험한 결과는 제안한 방법이 기존 경쟁 학습 방법에 비하여 더 빠르게 학습되고 더 좋은 화질을 갖게 됨을 보였다.
동사와 기본구 사이의 문법관계 분석은 품사부착과 기본구 인식이 수행된 상태에서, 동사와 의존관계를 갖는 기본구를 찾고 각 구의 구문적, 의미적 역할을 나타내는 기능태그를 인식하는 작업이다. 본 논문에서는 바이오 문서에서 단백질과 단백질, 유전자와 유전자 사이의 상호작용관계를 자동으로 추출하기 위해서 제안한 문법관계 분석 방법을 적용하고 따라서 동사와 명사고, 전치사고, 종속 접속사의 관계만을 분석하며 기능태그도 정보추출에 유용한 주어, 목적어를 나타내는 태그들로 제한하였다. 기능태그 부착과 의존관계 분석을 통합해 수행하였으며, 지도학습 방법 중 분류문제에서 좋은 성능을 보이는 지지 벡터 기계를 분류기로 사용하였고, 메모리 기반 학습을 사용하여 자질을 추출하였으며, 자료부족문제를 완화하기 위해서 저빈도 단어는 품사 타입 또는 워드넷의 최상위 클래스의 개념을 이용해서 대체하였다. 시험 결과지지 벡터 기계를 이용한 문법관계 분석은 실제 적용시 빠른 수행시간과 적은 메모리 사용으로 상호작용관계 추출에서 효율적으로 사용될 수 있음을 보였다.
이 논문은 다차원의 특징벡터를 벡터 근사치로 표현한 후 색인 트리를 구성하여 검객의 효율을 높이는 VA(Vector Approximate)-트리를 제안한다. 이 논문에서 제안하는 VA-트리는 전체적인 색인구조의 저장 공간을 줄이기 위해서 VA-화일의 벡터 근사치 개념을 이용하여 데이터양이 증가해도 검색 성능이 저하되지 않도록 하는 트리 형태의 구조를 갖는다. VA-트리는 MBR 기반의 색인구조이지만 MBR간에 겹침이 발생하지 않는 분할 방법을 사용하여 검색 효율을 높인다. 제안하는 색인구조와 기존의 여러 다차원 색인구조와의 성능 평가를 통해 제안하는 방법의 우수함을 보인다.
코드북을 이용하는 동 이득 전송 시스템에서 빠른 인덱스 탐색기법을 제안한다. 새로운 간단한 매트릭을 이용하여 빠르게 rough 탐색을 하여 몇 개의 후보 가중치 벡터들을 선택하고, 선택된 벡터들에 기존의 개념을 적용하는 accurate 탐색을 하여 최적의 가중치 벡터를 결정한다. 제안하는 기법은 송신 안테나 수가 2개, 3개일 경우 기존의 방법에 비해 탐색 시간이 반 이하로 줄어들면서, 링크 레벨 성능은 거의 동일하게 유지된다. 또한 코드북 크기가 커질수록 탐색시간이 기존의 방식에 비해 현저히 감소한다.
분류 벡터 양자화(classified vector quantization: CVQ)〔2의 부코드북을 설계함에 있어서, 경쟁 학습 네트워크〔5〕-〔7〕 는 소속도의 이분법적 표현으로 상당한 소속도를 가지는 벡터들이 학습 과정에 무시되는 경향을 가진다. 이를 개선하기 위해 제안된 퍼지 경쟁 학습 네트워크〔8〕는 각 클러스터가 연속적인 소속도를 가진다는 개념을 도입하여 이와 같은 문제들을 해결했다. 그러나 퍼지 경쟁 학습 네트워크를 CVQ에 적용할 경우, 각 부코드북의 크기를 시행착오로 결정해야 하는 문제점을 여전히 가지고 있으며, 이러한 문제점들의 개선을 위하여 본 논문에서는 수정 퍼지 경쟁 학습 네트워크(modified fuzzy competitive learning network)를 제안한다. 수정 퍼지 경쟁 학습 네트워크는 퍼지 학습 네트워크가 가지는 이 분법적 소속도를 연속적인 소속도로 확장하여, 학습 과정중에 나타날 수 있는 지역 최소점 도달을 억제하였다.
Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.
본 연구는 3차원 컴퓨터 그래픽 데이터의 디지털 저작권 보호를 위하여 3차원 데이터에 저작권을 주장하는 워터마크를 삽입하고 원본 없이도 추출할 수 있는 방법을 제안한다. 본 연구에서는 벡터의 개념을 사용하는 3차원 모델 가운데서도 많이 사용되고 있는 Spline방식으로 모델링 된 그래픽 데이터에 정보를 삽입, 추출하는 기술로서 추출 시에는 원본을 필요로 하지 않는다는 것이 특징이다. 좌표자체를 변경하지 않기 때문에 정보를 삽입한 후 3차원 데이터의 양에 작은 변화가 있지만 시각적으로 구분이 안될 정도로 3차원 모델의 형태를 완벽히 유지한다. 또한 삽입된 정보가 쉽게 노출되지 않으며 많은 양의 데이터를 삽입할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.