• Title/Summary/Keyword: 벡터 각

Search Result 1,282, Processing Time 0.031 seconds

Mean Shift Clustering을 이용한 영상 검색결과 개선

  • Kwon, Kyung-Su;Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.138-143
    • /
    • 2009
  • 본 논문에서는 감성 공간에서 mean shift clustering과 user feedback을 이용하여 영상 검색 결과를 개선하기 위한 시스템을 제안한다. 제안된 시스템은 사용자 인터페이스, 감성 공간 변환, 검색결과 순위 재지정(re-ranking)으로 구성된다. 사용자 인터페이스는 텍스트 형태의 질의 입력과 감성 어휘 선택에 따른 user feedback에 의해 개선된 검색결과를 보인다. 사용된 감성 어휘는 고바야시가 정의한 romantic, natural, casual, elegant, chic, classic, dandy, modern 등의 8개 어휘를 사용한다. 감성 공간 변환 단계에서는 입력된 질의에 따라 웹 영상 검색 엔진(Yahoo)에 의해 검색된 결과 영상들에 대해 컬러와 패턴정보의 특징을 추출하고, 이를 입력으로 하는 8개의 각 감성별 분류기에 의해 각 영상은 8차원 감성 공간으로의 특징 벡터로 변환된다. 이때 감성 공간으로 변환된 특징 벡터들은 mean shift clustering을 통해 군집화 되고, 그 결과로써 대표 클러스터를 찾게 된다. 검색결과 순위 재지정 단계에서는 user feedback 유무에 따라 대표 클러스터의 평균 벡터와 user feedback에 의해 생성된 사용자 감성 벡터에 의해 검색 결과를 개선할 수 있다. 이때 각 기준에 따라 유사도가 결정되고 검색결과 순위가 재지정 된다 제안된 시스템의 성능을 검증하기 위해 7개의 질의의 각 400장, 총 2,800장에 대한 Yahoo 검색 결과와 제안된 시스템을 개선된 검색 결과를 비교하였다.

  • PDF

Motion-Compensated Frame Rate Up-Conversion Using Guidance Motion Vector (유도 움직임 벡터를 이용한 움직임 보상 프레임율 향상 기법)

  • Park, Bumjun;Yu, Songhyun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.66-69
    • /
    • 2017
  • 본 논문에서는 프레임율 향상 기법 (Frame Rate Up-Conversion, FRUC)에 사용되는 새로운 움직임 예측(motion estimation)알고리즘을 제시한다. 제안된 알고리즘은 단 방향 움직임 예측(unilateral motion estimation)에 의해 순방향 및 역방향의 움직임 벡터(motion vector)를 독립적으로 추정한다. 움직임 벡터를 찾은 후, weighted motion vector smoothing(WMVS)가 적용된다. 다음으로, 보간 프레임 (interpolated frame)의 관점에서 현재 블록의 인접 블록들의 모션 벡터들을 후보들로 사용하여 현재 블록과 가장 잘 일치하는 움직임 벡터를 찾는다. 그 후, 선택된 움직임 벡터를 현재 블록의 유도 움직임 벡터 (guidance motion vector)로 정한다. 그런 다음 motion vector shifting error 를 없애기 위해 motion vector refinement (MVR)가 진행된다. 마지막 단계에서는 각 움직임 벡터의 신뢰도를 계산하여 순방향 및 역방향 움직임 벡터 중 최종 움직임 벡터를 선택한다.

  • PDF

An Effective Method for Approximating the Euclidean Distance in High-Dimensional Space (고차원 공간에서 유클리드 거리의 효과적인 근사 방안)

  • Jeong, Seung-Do;Kim, Sang-Wook;Kim, Ki-Dong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.69-78
    • /
    • 2005
  • It is crucial to compute the Euclidean distance between two vectors efficiently in high dimensional space for multimedia information retrieval. In this paper, we propose an effective method for approximating the Euclidean distance between two high-dimensional vectors. For this approximation, a previous method, which simply employs norms of two vectors, has been proposed. This method, however, ignores the angle between two vectors in approximation, and thus suffers from large approximation errors. Our method introduces an additional vector called a reference vector for estimating the angle between the two vectors, and approximates the Euclidean distance accurately by using the estimated angle. This makes the approximation errors reduced significantly compared with the previous method. Also, we formally prove that the value approximated by our method is always smaller than the actual Euclidean distance. This implies that our method does not incur any false dismissal in multimedia information retrieval. Finally, we verify the superiority of the proposed method via performance evaluation with extensive experiments.

별 가시도 해석을 이용한 별 추적기의 최적 배치 결정

  • Yim, Jo-Ryeong;Lee, Seon-Ho;Yong, Gi-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.66-76
    • /
    • 2005
  • In this study, star visibility analysis of a star tracker is performed by using a statistical apprach. The probability of the Sun and the Earth proximity, the solar array masking probability, and the solar array blinding probability by the Sun light are obtained from the arbitrary chosen satellite positions as a function of a line of sight vector of the star tracker in several satellite attitude modes. This analysis demonstrates that the optimized star tracker accomodations can be determined to be an elevation angle -40o and two azimuth angles $-35^{circ}$ and $-150^{circ}$.

  • PDF

A Fast Vector Quantization using Subregion-based Caches of Codeword Indexes (부영역 기반 코드워드 인덱스 캐시를 사용한 고속 벡터 양자화)

  • Kim, Yong-Ha;Kim, Dae-Jin;Bang, Seung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.4
    • /
    • pp.369-379
    • /
    • 2001
  • 본 논문은 부영역 분할과 코드워드 인텍스의 캐시 개념을 이용하여 벡터 양자화를 위한 고속코드북 생성 및 부호화 방법을 제안한다. 제안한 방법은 인접한 입력 벡터는 대개 코드북내 특정 코드워드에 의해 나타내어지는 국부성에 바탕을 두고 있다. 초기에 모든 학습 벡터가 거리에 기반한 근접성을 이용하여 정해진 수의 부영역으로 분할된다. 각 부영역에 하나의 코드워드 인덱스 캐시가 할당되는데 이 캐시는 학습 초기에는 전체 코드북 크기에 대응하는 코드워드 인덱스를 갖는다. 학습이 진행되면서 입력 벡터가 갖는 국부성 때문에 각 부영역내 캐시중 사용되지 않는 코드워드 인덱스가 점차 발생하게 되므로 이들은 LRU(Least Recently Used) 삭제 알고리즘에 의해 제거된다. 학습이 진행됨에 따라 부영역 캐시에는 주어진 입력 벡터에 의해 참조되는 코드워드 인덱스만이 남게 되므로 한 학습 주기 동한 필요한 학습 시간이 점차 짧아지게 되어 전체적으로 코드북 생성 시간을 크게 줄일 수 있게 된다. 제안한 방법은 매 학습주기마다, 코드워드 인덱스 삭제 후보 중 주어진 부영역 중심으로부터 거리에 의해 멀리 떨어진 것부터 반만을 제거함에 따라. 복원된 영상의 화질 열화가 거의 없다. 시뮬레이션 결과 제안한 방법은 기존의 LBG 방법에 비해 화질 열화는 거의 없지만 코드북 생성 (또는 부호화) 속도를 2.6-5.4배 (또는3.7-18.8배) 향상시킨다.

  • PDF

Analysis of Vocabulary Relations by Dimensional Reduction for Word Vectors Visualization (차원감소 단어벡터 시각화를 통한 어휘별 관계 분석)

  • Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.13-16
    • /
    • 2022
  • LSTM과 같은 딥러닝 기법을 이용해 언어모델을 얻는 과정에서 일종의 부산물로 학습 대상인 말뭉치를 구성하는 어휘의 단어벡터를 얻을 수 있다. 단어벡터의 차원을 2차원으로 감소시킨 후 이를 평면에 도시하면 대상 문장/문서의 핵심 어휘 사이의 상대적인 거리와 각도 등을 직관적으로 확인할 수 있다. 본 연구에서는 기형도의 시(詩)을 중심으로 특정 작품을 선정한 후 시를 구성하는 핵심 어휘들의 차원 감소된 단어벡터를 2D 평면에 도시하여, 단어벡터를 얻기 위한 텍스트 전처리 방식에 따라 그 거리/각도가 달라지는 양상을 분석해 보았다. 어휘 사이의 거리에 의해 군집/분류의 결과가 달라질 수 있고, 각도에 의해 유사도/유추 연산의 결과가 달라질 수 있으므로, 평면상에서 핵심 어휘들의 상대적인 거리/각도의 직관적 확인을 통해 군집/분류작업과 유사도 추천/유추 등의 작업 결과의 양상 변화를 확인할 수 있었다. 이상의 결과를 통해, 영화 추천/리뷰나 문학작품과 같이 단어 하나하나의 배치에 따라 그 분위기와 정동이 달라지는 분야의 경우 텍스트 전처리에 따른 거리/각도 변화를 미리 직관적으로 확인한다면 분류/유사도 추천과 같은 작업을 좀 더 정밀하게 수행할 수 있을 것으로 판단된다.

  • PDF

Subband Image Coding using Multirate Tree-Structured Vector Quantization (다중비트율 트리구조 벡터 양자화를 이용한 영상의 대역분할 부호화)

  • 이광기;이완주;김대관;최일상;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.895-906
    • /
    • 1993
  • In this paper, MTSVQ(Multirate Tree-Structured Vector Quantization) is introduced for subband image coding. Original images are decomposed into a number of subband components, and multiresolution codebook is designed by MTSVQ algorithm. Optimal bit allocation among the subband components becomes the problem selecting the particular pruned subtree of MTSVQ which has the desired rate and distortion.

  • PDF

Visual Object Tracking Using Superpixel-Based Graph Cuts (슈퍼픽셀 기반의 그래프 컷을 이용한 객체 추적)

  • Lee, Dae-Youn;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.64-65
    • /
    • 2013
  • 본 논문에서는 슈퍼픽셀(superpixel) 단위의 그래프 컷 알고리즘을 적용하여 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 먼저 영상 분할 기법을 사용하여 입력 영상을 슈퍼픽셀로 분할하고 각 슈퍼픽셀에서 색상 히스토그램을 이용한 특성 벡터를 생성한다. 그리고 특성 벡터에 지지벡터기계(support vector machines)를 사용하여 각 슈퍼픽셀의 객체 확률 값을 추정한다. 객체 확률 값을 데이터 항(data term)으로, 이웃한 슈퍼픽셀 간의 특성 벡터 차 값을 스무드 항(smooth term)으로 하여, 그래프 컷(graph cuts) 알고리즘으로 슈퍼픽셀들을 객체와 배경으로 분류하고 객체 슈퍼픽셀을 최대한으로 포함하는 객체 윈도우를 찾는다. 실험 결과는 제안하는 기법이 기존 기법들보다 객체 추적 성능이 우수함을 보여준다.

  • PDF

Recognition of Outdoor Scenery Containing Roads using Neural Network (신경망을 이용한 도로가 포함된 야외영상 인식)

  • Lee, Hyo-Jong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.132-140
    • /
    • 2001
  • 야외에서 인지되는 자연 경치는 다양한 개체, 빛의 산란, 또는 변화를 주는 많은 요소들 때문에 컴퓨터 영상처리에서 인식하기가 쉽지 않다. 본 논문에서는 다층 인지 신경망을 이용하여 도로가 포함된 야외영상에 나타나는 개체들을 인식하는 방법을 연구하였다. 자연 영상을 영역화한 후, 각각의 영역들에 대하여 색상과 기하학적인 특성에 근거하여 특성벡터를 추출하고 이를 신경망에 입력하여 각 영역을 구분하는 2단계의 알고리듬을 제안한다. 먼저 야외 영상들을 개선된 영역 확장법과 병합과정에 의하여 개체별로 영역화하였다. 영역화된 연상은 자연 영상과 함께 영상 데이타베이스에 저장되고, 이 자료들을 이용하여 각 영역의 특성벡터를 계산하였다. 이 특성 벡터를 구성된 신경망의 입력층에 전달하면, 각 영역은 27개의 개체 중의 하나로 출력층에서 인식된다. 제안된 방법은 학습에 사용된 데이타, 학스베 사용되지 않은 새로운 데이타, 그리고 모두 합하여 놓은 데이타의 세가지 데이타 군에서 무작위로 선별하여 인식률을 측정하였다. 학습된 데이타에서는 99.4%까지의 인식률을 보여주었고, 학습되지 않은 데이타에 대해서도 최고 89.1%까지의 인식률을 나타내었다. 제안된 방법은 평균적으로 88.1%~97.9%의 인식률을 보여주어 자연 경치의 인식에 신뢰성이 있는 방법으로 사용될 수 있음을 증명하였다.

  • PDF

Comparative Analysis of Offset Voltage PWM and $V_{max}-V_{mid}$ PWM Method for 3 Phase Matrix Converter (3상 매트릭스 컨버터에 사용되는 옵셋전압 PWM방법과 $V_{max}-V_{mid}$ PWM 방법의 비교분석)

  • Cha, Han-Ju;Kim, Woo-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.932-933
    • /
    • 2008
  • 본 논문에서는 매트릭스 컨버터의 두가지 전압 변조 방법을 직관적이고 직접적인 그래픽적 접근을 통해 비교 분석한다. 전압 변조에 있어서 옵셋전압 PWM방법은 캐리어비교를 기본으로 하여 옵셋전압을 더함으로써 전압 변조를 하고, $V_{max}-V_{mid}$ PWM 방법은 샘플링 주기내에서 한상을 고정시키고 나머지 두 상을 온-오프 하는 방식으로 전압 변조를 한다. 이 과정에서 중요한 두가지 특징이 전류 리플과 스위칭 손실이고, 전류 리플과 관련해서 각변조 방법의 고조파 전압을 그래프로 그려 분석한다.먼저 출력지령전압 벡터와 각 스위칭 영역별 벡터간의 차에 의한 고조파 성분을 스위칭 한주기내에서 벡터도를 그리고, 그 다음으로 출력전압 위상각과 전압 변조율을 달리 하여 각각의 고조파 전압 그래프를 그려 비교 분석해 보았다.

  • PDF