• Title/Summary/Keyword: 벡터형 태그

Search Result 3, Processing Time 0.02 seconds

A Vector Tagging Method for Representing Multi-dimensional Index (다차원 인덱스를 위한 벡터형 태깅 연구)

  • Jung, Jae-Youn;Zin, Hyeon-Cheol;Kim, Chong-Gun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.9
    • /
    • pp.749-757
    • /
    • 2009
  • A Internet user can easily access to the target information by web searching using some key-words or categories in the present Internet environment. When some meta-data which represent attributes of several data structures well are used, then more accurate result which is matched with the intention of users can be provided. This study proposes a multiple dimensional vector tagging method for the small web user group who interest in maintaining and sharing the bookmark for common interesting topics. The proposed method uses vector tag method for increasing the effect of categorization, management, and retrieval of target information. The vector tag composes with two or more components of the user defined priority. The basic vector space is created time of information and reference value. The calculated vector value shows the usability of information and became the metric of ranking. The ranking accuracy of the proposed method compares with that of a simply link structure, The proposed method shows better results for corresponding the intention of users.

Outsourced Storage Auditing Scheme using Coefficient Matrix (계수행렬을 이용한 외부 스토리지 무결성 검증 기법)

  • Eun, Hasoo;Oh, Heekuck;Kim, Sangjin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.483-488
    • /
    • 2013
  • Users can access their data anywhere, at any time by using outsourced storage. But they cannot know how service provider manage the data. Even user cannot know when data damaged. To solve these problems, the outsourced storage auditing schemes has been proposed. Most proposed schemes are based on Homomorphic Verifiable Tags. But it has computational efficiency limitation because data used to exponent. In this paper, we propose a novel approach to outsourced storage auditing scheme using coefficient matrix. In the proposed scheme, data used to auditing by coefficient matrix form. Auditing procedures are proceed as solving the linear simultaneous equation. The auditor can audit easily by solving the equation using solution vector. The auditor can audit the n size data using sqrt(n) size data through out proposed scheme.

Characterization of Exolytic GH50A β-Agarase and GH117A α-NABH Involved in Agarose Saccharification of Cellvibrio sp. KY-GH-1 and Possible Application to Mass Production of NA2 and L-AHG (Cellvibrio sp. KY-GH-1의 아가로오스 당화 관련 엑소형 GH50A β-아가레이즈와 GH117A α-NABH의 특성 및 NA2와 L-AHG 양산에의 적용 가능성)

  • Jang, Won Young;Lee, Hee Kyoung;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.356-365
    • /
    • 2021
  • Recently, we sequenced the entire genome of a freshwater agar-degrading bacterium Cellvibrio sp. KY-GH-1 (KCTC13629BP) to explore genetic information encoding agarases that hydrolyze agarose into monomers 3,6-anhydro-L-galactose (L-AHG) and D-galactose. The KY-GH-1 strain appeared to possess nine β-agarase genes and two α-neoagarobiose hydrolase (α-NABH) genes in a 77-kb agarase gene cluster. Based on these genetic information, the KY-GH-1 strain-caused agarose degradation into L-AHG and D-galactose was predicted to be initiated by both endolytic GH16 and GH86 β-agarases to generate NAOS (NA4/NA6/NA8), and further processed by exolytic GH50 β-agarases to generate NA2, and then terminated by GH117 α-NABHs which degrade NA2 into L-AHG and D-galactose. More recently, by employing E. coli expression system with pET-30a vector we obtained three recombinant His-tagged GH50 family β-agarases (GH50A, GH50B, and GH50C) derived from Cellvibrio sp. KY-GH-1 to compare their enzymatic properties. GH50A β-agarase turned out to have the highest exolytic β-agarase activity among the three GH50 isozymes, catalyzing efficient NA2 production from the substrate (agarose, NAOS or AOS). Additionally, we determined that GH117A α-NABH, but not GH117B α-NABH, could potently degrade NA2 into L-AHG and D-galactose. Sequentially, we examined the enzymatic characteristics of GH50A β-agarase and GH117A α-NABH, and assessed their efficiency for NA2 production from agarose and for production of L-AHG and D-galactose from NA2, respectively. In this review, we describe the benefits of recombinant GH50A β-agarase and GH117A α-NABH originated from Cellvibrio sp. KY-GH-1, which may be useful for the enzymatic hydrolysis of agarose for mass production of L-AHG and D-galactose.