• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.025 seconds

사후 확률.확률 밀도 함수의 추정과 Probabilistic neural network을 이요한 모음 인식에 의한 평가

  • 허강인;이광석;김명기
    • 한국음향학회지
    • /
    • 제12권6호
    • /
    • pp.21-27
    • /
    • 1993
  • 계층형 신경망은 패턴 분류를 위해 사용되어 왔다. 이것은 주어진 교사패턴들의 학습으로 원하는 입력-출력 간의 매핑을 할 수 있기 때문이다. 신경망은 타겟ㅌ트 패턴이 입력 패턴의 카테고리에 일치할 때 타겟트 패턴을 학습하므로서 사후 확률을 근사화할 수 있다. 그리고 입력 공간을 부분 공간으로 나누어 학습 데이터들의 비율로서 만든 타겟트 벡터들로 학습한 신경망은 확률밀도 함수를 나타낼 수 있다. 본 연구에서는 역전파 학습법을 이용한 계층형 NN 과 코드북으로서 사후 확률과 확률밀도함수의 측정방법을 제안하였다. VQ 로 추정한 사후확률고 확률밀도함수를 이용하여 학습이 필요없는 RBF network 의 일종인 PNN으로 모음 인식을 수행 하였다. 인식 실험에서 PNN 의 결과는 역전파 학습법을 이용항 3층 신경망과 VQ 의 평균 인식율과 비교되었다. VQ-PNN의 인식율이 다른 것보다 우수하게 나타났다.

  • PDF

공간-변형 셀룰라 신경망 기반 연상 메모리 설계를 위한 새로운 방법론 (A synthesis procedure for associative memories based on space-varying cellular neural networks)

  • 김혜연;박주영;박연묵;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.472-474
    • /
    • 2000
  • 본 논문에서는 연상 메모리 기능을 수행하는 공간-변형 셀룰라 신경망의 설계 방법론을 제안한다. 셀룰라 신경망에 관한 알려진 결과들과 새로 도출된 이론을 기반으로, 주어진 양극 벡터들을 기대할만한 성능으로 기억할 수 있는 공간-변형 셀룰라 신경망을 얻는 설계 방법론을 제안한다. 본 논문에서 제안된 설계 방법론의 주요 부분은 일반화된 고유값 문제(GEVP)와 선형행렬 부등식 문제(LMIP)를 푸는 것으로 이루어지며, 이 문제들은 현재 내부점 방법에 의해 효과적으로 풀릴 수 있다. 제안된 방법의 정당성은 설계 예제를 통해서 증명한다.

  • PDF

신경망 기반 독립성분분석에 의한 단일영상들의 특징추출 (Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks)

  • 조용현;민성재;김아람;오정은
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

신경망 기반 독립성분분석을 이용한 지문영상의 효과적인 특징추출 (An Efficient Feature Extraction of Finger Images by Using Independent Component Analysis Based on Neuarl Networks)

  • 조용현;민성재
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문에서는 신경망 기반 독립성분분석기법을 이용하여 지문영상에 포함된 특징들을 효과적으로 추출하는 방법을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 학습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 지문영상에서 선택된 10,000개의 영상패치를 대상으로 시뮬레이션 한 결과, 추출된 16$\times$16 펙셀의 160개 독립성분 기저벡터는 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

Dempster's Rule of Combination을 이용한 인공신경망간의 결합에 의한 ARMA 모형화 (Combining Multiple Neural Networks by Dempster's Rule of Combination for ARMA Model Identification)

  • 오상봉
    • 정보기술응용연구
    • /
    • 제1권3_4호
    • /
    • pp.69-90
    • /
    • 1999
  • 본 논문은 시계열자료의 ARMA 모형화를 위해 계층적(Hierarchical) 문제해결 방식인 인공신경망 기초 의상결정트리분류기상의 인공신경망 구조를 개선하여 지역문제(Local Problem)를 해결하는 복수개의 인공신경망 결과를 Dempster's rule of combination을 이용하여 종합하는 병행적인 (Parallel) ARMA 모형활르 위한 방법론을 제시함으로써 의사결정트리분류기에 근거한 방법론의 단점을 보완하였다. 본 논문에서 제시한 ARMA 모형화를 위한 방법론은 세 단계로 구성되어 있다: 1) ESACF 특성 벡터 추출단계; 2) 개별 인공신경망에 의한 부분적 모델링 단계; 3) Conflict Resolution 단계, 제시한 방법론을 검증하기 위해 모의실험용 자료와 실제 시계열자료를 이용하여 제시된 방법론을 검증하였으며 실험결과 기존 연구에 비해 ARMA 모형화와 정확도가 높은 것으로 나타났다.

  • PDF

다중 신경망으로부터 해석 중심의 적응적 지식 증류 (Explanation-focused Adaptive Multi-teacher Knowledge Distillation)

  • 이자윤;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.592-595
    • /
    • 2024
  • 엄청난 성능에도 불구하고, 심층 신경망은 예측결과에 대한 설명이 없는 블랙 박스로 작동한다는 비판을 받고 있다. 이러한 불투명한 표현은 신뢰성을 제한하고 모델의 대한 과학적 이해를 방해한다. 본 연구는 여러 개의 교사 신경망으로부터 설명 중심의 학생 신경망으로 지식 증류를 통해 해석 가능성을 향상시키는 것을 제안한다. 구체적으로, 인간이 정의한 개념 활성화 벡터 (CAV)를 통해 교사 모델의 개념 민감도를 방향성 도함수를 사용하여 계량화한다. 목표 개념에 대한 민감도 점수에 비례하여 교사 지식 융합을 가중치를 부여함으로써 증류된 학생 모델은 양호한 성능을 달성하면서 네트워크 논리를 해석으로 집중시킨다. 실험 결과, ResNet50, DenseNet201 및 EfficientNetV2-S 앙상블을 7 배 작은 아키텍처로 압축하여 정확도가 6% 향상되었다. 이 방법은 모델 용량, 예측 능력 및 해석 가능성 사이의 트레이드오프를 조화하고자 한다. 이는 모바일 플랫폼부터 안정성이 중요한 도메인에 걸쳐 믿을 수 있는 AI 의 미래를 여는 데 도움이 될 것이다.

모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환 (Narrowband to Wideband Conversion of Speech using Modularized Neural Network)

  • 우동헌;고참한;강현민;김유신;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발 (Development of radar-based nowcasting method using Generative Adversarial Network)

  • 윤성심;신홍준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

응급실 방문 노인 환자의 사망률 예측 (Mortality Prediction of Older Adults Admitted to the Emergency Department)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.275-280
    • /
    • 2018
  • 세계 인구의 고령화가 진행되는 오늘날 노인들을 위한 의료 서비스의 수요는 점차 증가할 것으로 보인다. 특히, 응급실을 방문하는 노인 환자는 일반 환자보다 다양한 질병을 갖고 있거나, 특이한 증상을 호소하는 등 복잡한 의학적, 사회적 및 신체적 문제를 가지고 있는 경우가 많다. 우리는 65세 이상의 응급실을 방문한 노인 환자의 사망률 예측을 위해 연령, 성별, 혈압, 체온, 혈액검사, 주증상명 등의 의료 데이터를 사용하였다. Feed Forward 신경망과 지지벡터기계를 각각 학습하여 사망률을 예측하고 그 성능을 비교하였다. 1개의 은닉층을 사용한 Feed Forward 신경망의 실험결과가 가장 좋았으며, 이 때 F1 점수는 52.0%, AUC는 88.6%이다. 좀 더 좋은 의료 자질을 추출하여 제안 시스템의 성능을 향상시킨다면 응급실에 방문한 노인 환자들을 위한 효과적이고 신속한 의료 자원 배분을 통해 더 좋은 의료 서비스를 제공할 수 있을 것이다.

출력 코딩 기반 다중 클래스 서포트 벡터 머신을 위한 특징 선택 기법 (A Novel Feature Selection Method for Output Coding based Multiclass SVM)

  • 이영주;이정진
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.795-801
    • /
    • 2013
  • 서포트 벡터 머신은 뛰어난 일반화 성능에 힘입어 다양한 분야에서 의사 결정 나무나 인공 신경망에 비해 더 좋은 분류 성능을 보이고 있기 때문에 최근 널리 사용되고 있다. 서포트 벡터 머신은 기본적으로 이진 분류 문제를 위하여 설계되었기 때문에 서포트 벡터 머신을 다중 클래스 문제에 적용하기 위한 방법으로 다중 이진 분류기의 출력 결과를 이용하는 출력 코딩 방법이 주로 사용되고 있다. 그러나 출력 코딩 기반 서포트 벡터 머신에 사용된 기존 특징 선택 기법은 각 분류기의 정확도 향상을 위한 특징이 아니라 전체 분류 정확도 향상을 위한 특징을 선택하고 있다. 본 논문에서는 출력 코딩 기반 서포트 벡터 머신의 각 이진 분류기의 분류 정확도를 최대화하는 특징을 각각 선택하여 사용함으로써, 전체 분류 정확도를 향상시키는 특징 선택 기법을 제안한다. 실험 결과는 제안 기법이 기존 특징 선택 기법에 비하여 통계적으로 유의미한 분류 정확도 향상이 있었음을 보여주었다.