• Title/Summary/Keyword: 베인전단시험

Search Result 32, Processing Time 0.025 seconds

Characteristics of Undrained Shear Strength and Development of Modified SPT on Very Soft Ground in Korea (국내 초연약지반의 비배수전단강도 특성 및 개량표준관입시험기 개발)

  • Jung, Hyuksang;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.105-115
    • /
    • 2009
  • In this study, SPT, FV, and CPT tests were performed at five very soft grounds in southern coast of Korea to characterize the $S_u$ of very soft ground. In addition, a new modified SPT that is applicable to very soft ground was developed. Tests results showed that in very soft ground (N<2), the $S_u$ was lower than 12.5 kPa using the empirical N-Su correlation, and lower than 50 kPa and 65 kPa using vane shear test and CPT, respectively. It was shown that the results of in-situ tests were higher than those estimated from the N-Su correlation, and it was also demonstrated that the range of estimated $S_u$ was quite wide. New correlations that relate the modified SPT $N_m$ with Su from FV and CPT were developed, which are $S_u=1.76N_m-10.47$ and $S_u=1.82N_m-9.71$, respectively.

  • PDF

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

Evaluation of Undrained Shear Strength of Busan New-port Clay by DMT (DMT를 이용한 부산신항 점토의 비배수 전단강도 추정)

  • Hong, Sung-Jin;Shin, Dong-Hyun;Kim, Dong-Hee;Jung, Sang-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.87-98
    • /
    • 2007
  • A series of dilatometer test, field vane test, and $CK_0U$ triaxial test were performed for clayey soils of Busan new port site to develop the relationships between undrained shear strength and the DMT results. Normalized undrained shear strength is turned out to be $S_{u(CKU)}/{\sigma}'_v=0.30{\sim}0.35\;for\;CK_0U$ triaxial test and ${\mu}S_{u(VST)}/{\sigma}'_v=0.20{\sim}0.22$ for vane shear test. By comparing the undrained shear strength estimated from DMT indices with the results measured by in-situ vane test or $CK_0U$ triaxial test, two methods to predict the undrained shear strength from DMT results are suggested. One is based on the relationship between $S_u/{\sigma}'_v$ and horizontal stress index (KD) while another method comes from $N_c-I_D$ and $N_c-E_D$ correlation. It was observed that the method based on $N_c-I_D\;or\;N_c-E_D$ relation shows slightly better accuracy than the one based on $K_D$ although all of the methods suggested in this study provided comparable values of predicted undrained shear strength. Since the definitions of $I_D\;and\;E_D$ contain $p_1-p_0$, in which soil condition is reflected, it is believed that the prediction method using $N_c$ is capable of taking a material type into consideration.

Evaluation of CPTu Cone Factors for Busan Clay Using Pore Pressure Ratio (간극수압비를 이용한 부산점토의 CPTu 콘계수 추정)

  • Hong, Sung-Jin;Lee, Moon-Joo;Kim, Tai-Jun;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.77-88
    • /
    • 2009
  • Cone factors, $N_{kt}$, $N_{ke}$ and $N_{{\Delta}u}$, for estimating undrained shear strength of Busan clay are evaluated in this study. For this, CPTu and field vane tests are performed for clay layers at two sites, Busan new-port and Noksan, and also $CK_0U$ triaxial tests with undisturbed samples taken from the same site are carried out. From experimental results, it is observed that the undrained shear strengths of clay increases with depth, and the undrained shear strength obtained from triaxial tests is 1.5 times higher than one obtained from vane tests. The normalized undrained shear strengths of Busan clay from triaxial and vane shear tests are $0.26{\sim}0.44$ and $0.20{\sim}0.23$, respectively. In CPTu results, cone tip resistance ($q_c$) and pore pressure ($u_2$) linearly increase with depth, and the pore pressure ratio ($B_q$) of Busan clay is within the range of $0.3{\sim}1.0$. The cone factors, which are determined by comparing the CPTu results with $CK_0U$ triaxial and vane shear test results, are found to be $5{\sim}20$ and $10{\sim}35$, respectively. It is also observed that the cone factors are inversely proportional to the pore pressure ratio. From this, the prediction methods for evaluating the cone factors of Busan clay are developed.

Estimation of Soft Ground Piezocone Factors at Gwangyang, Jeonnam (전남 광양지역 연약지반의 피에조콘계수 산정)

  • Oh, Dongchoon;Kim, Kibeom;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Using the results from laboratory soil test, field vane test and piezocone penetration test, the engineering characteristics of the soft ground at east side of Gwangyang Port, which is located at south coast of Jeollanam-do, were investigated and optimal piezocone penetration test depth was derived to calculate piezocone factor. In this paper, the results of 61 laboratory soil tests, 226 times of field vane tests and 26 piezocone penetration tests were used. The result of laboratory soil test suggested that some physical properties such as specific gravity, moisture content, liquid limit and plastic index and others are higher than other south coast regions, meanwhile uniaxial compression strength, undrained shear strength, defined as mechanical property, appeared to be relatively small, distributed widely. According to the plastic chart, the ground was classified as high compressibility clay and low compressibility clay, mostly represent to Type 3 clay by Robertson (1990)'s classification chart. Piezocone factor was calculated by empirical method, based on the undrained shear strength which was obtained by the field vane test. According to the analysis with 3 different depth range, to set the appropriate measured depth range of piezocone penetration for comparation, using average value of the range of 5 times the vane length showed the highest correlation.

A Study on the Initial Shear Strength Characteristics of Sudden Gelation Grout (순결형 그라우트의 초기 전단강도 특성에 대한 연구)

  • Heo, Hyung-Seok;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.33-44
    • /
    • 2020
  • In order to analyze the shear strength characteristics of the grout with sudden gelation in the pre-hardening state, the viscosity of the mixture and the indoor vane shear test were performed. The grout was prepared according to the water-cement (w/c) ratio and the shear strength test was conducted. The plastic-state shear strength of grout was affected by the w/c ratio, so the lower the w/c ratio, the higher the initial shear strength was, and the longer the curing time was, the higher the shear strength was. The maximum shear strength occurred at the faster rotation angle as the higher shear strength was developed, and the lower shear strength occurred at the larger rotation angle. In addition, it was confirmed that the pre-hardening grout rapidly decreased in strength after the maximum shear strength was gained, and converged at a certain level after the rotation angle of the vane blade was about 70° to 90°.

A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability (EPB 쉴드 TBM 굴착토의 유동학적 특성 평가를 위한 실내 가압 베인시험: 장비 개발과 적용성 평가)

  • Kwak, Junho;Lee, Hyobum;Hwang, Byeonghyun;Choi, Junhyuk;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.355-374
    • /
    • 2022
  • Soil conditioning improves the performance of EPB (earth pressure balance) shield TBMs (tunnel boring machines) by reducing shear strength, enhancing workability of the excavated soil, and supporting the tunnel face during EPB tunnelling. The mechanical and rheological behavior of the excavated muck mixed with additives should be properly evaluated to determine the optimal additive injection condition corresponding to each ground type. In this study, the laboratory pressurized vane test apparatus equipped with a vane-shaped rheometer was developed to reproduce the pressurized condition in the TBM chamber and quantitively evaluate rheological properties of the soil specimens. A series of the pressurized vane tests were performed for an artificial sand soil by changing foam injection ratio (FIR) and polymer injection ratio (PIR), which are the injection parameters of the foam and the polymer, respectively. In addition, the workability of the conditioned soil was evaluated through the slump test. The peak and yield stresses of the conditioned soil with respect to the injection parameters were evaluated through the rheogram, which was derived from the measured torque data in the pressurized vane test. As FIR increased or PIR decreased, the workability of the conditioned soil increased, and the maximum torque, peak stress, and yield stress decreased. The peak stress and yield stress of the specimen from the laboratory pressurized vane test correspond to the workability evaluated by the slump tests, which implies the applicability of the proposed test for evaluating the rheological properties of excavated soil.

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF

Characteristics of Undrained Shear Strength of Yangsan Clay (양산점토의 비배수 전단강도 특성)

  • 김길수;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.259-267
    • /
    • 2001
  • 실내시험으로 구한 점토의 공학적 성질은 샘플링, 운반, 저장, 그리고 성형과정 동안에 발생하는 시료의 교란으로 인해 원지반의 성질과 다르게 측정된다. 본 연구에서는 양산점토에 대한 삼축압축시험($CK_{o}$ UC) 결과를 이용하여 샘플링 방법에 따른 교란의 정도를 평가하였다. 실험에 사용된 시료는 76mm 튜브샘플러, 76mm 피스톤샘플러, 블록샘플러로 채취되었으며, 시료의 교란정도를 평가하기 위해 각 시료에서 측정된 체적변형률, 비배수 전단강도, Secant Youngs modulus, 그리고 파괴시 간극수압계수를 비교하였다. 시료의 교란정도를 평가하는 것 이외에도 SHANSEP 방법을 이용하여 수행한 $CK_{o}$ U 삼축압축시험 결과를 이용하여 양산점토에 대한 정규화 전단강도($C_{u}$ /$\sigma$$_{vc}$ )와 OCR 관계를 규명하였다. 또, 피에조콘 관입시험, 딜라토메타 시험, 그리고 현장 베인시험결과를 이용하여 구한 양산점토의 비배수 전단강도를 삼축압축시험 결과와 비교하였다.

  • PDF