• Title/Summary/Keyword: 베이지안 확률 모델

Search Result 101, Processing Time 0.031 seconds

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

Prognostic Modeling of Metabolic Syndrome Using Bayesian Networks (베이지안 네트워크를 이용한 대사증후군의 예측 모델링)

  • Park Han-Saem;Cho Sung-Bae;Lee Hong Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.292-294
    • /
    • 2005
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말한다. 미국에서는 $25\%$ 이상의 성인이 대사성 증후군인 것으로 알려져 있으며, 경제 여건의 향상 및 식생활 습관의 변화와 함께 최근 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되고 있는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학 분야에서 지식 발견, 데이터 마이닝을 위한 도구로 유용하게 사용되고 있다. 본 논문에 서 는 대사증후군을 예측하는 문제를 다루며, 베이지안 네트워크와 의학 지식을 이용한 대사증후군의 예측 모델을 제안한다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행하였으며, 실험 결과 다층 신경망, k-최근접 이웃 등의 분류기 보다 높은 $81.5\%$의 예측율을 보였다.

  • PDF

Large-Scale Bayesian Genetic Network Learning for Pharmacogenomics (Pharmacogenomics를 위한 대규모 베이지안 유전자망 학습)

  • 황규백;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.139-141
    • /
    • 2001
  • Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.

  • PDF

Bayesian Network Modeling based on Ontology for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 온톨로지 기반 베이지안 네트워크 모델링)

  • Song Youn-Suk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.112-114
    • /
    • 2006
  • 최근 영상 인식 정보를 서비스 로봇 도메인에서 사용하기 위한 연구와 함께 전통적인 영상 인식 방법의 성능을 높이기 위한 연구가 진행되고 있다. 기존의 방법들은 기하학적 모델을 기반으로 예측 가능한 환경에서 상황을 인식하였기에 이를 실내 환경과 같은 동적인 환경에 적용하는 것은 정확도나 인식의 효율 면에서 한계를 갖는다. 이에 지식 기반 접근 방법을 통해 정확도를 항상 시키거나 계산 비용을 감소시킴으로써 영상 인식성능을 높이기 위한 다양한 연구가 있어 왔다. 본 논문에서는 서비스 로봇이 물체를 탐색할 때, 대상 물체가 다른 물체에 의해 가려짐으로써 발생하는 불확실한 상황을 해결하기 위한 방법을 제안한다. 제안하는 방법은 발견된 물체를 컨텍스트 정보로 사용하여 대상 물체의 존재 여부를 추론하며, 이를 위해 신뢰도를 모델링할 수 있는 확률적 모델인 베이지안 네트워크와 도메인 지식을 모델링 할 수 있는 온톨로지를 함께 사용한다. 효과적인 모델링을 위해 본 논문에서는 기본적인 물체 관계를 모듈화 하여 설계하기 위한 베이지안 네트워크 구조와 확률 값 선정 방법. 이들을 온톨로지를 기반으로 주어진 상창에 따라 결합하는 방법을 제안한다. 이는 물체 관계를 모델링할 때 발생하는 중복 설계를 감소시켜주고 유지 및 보수를 용이하게 한다. 설계된 추론 모듈은 실험 결과 5가지 장소에서 높은 정확도를 보여주었다.

  • PDF

Hybrid of Reinforcement Learning and Bayesian Inference for Effective Target Tracking of Reactive Agents (반응형 에이전트의 효과적인 물체 추적을 위한 베이지 안 추론과 강화학습의 결합)

  • 민현정;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.94-96
    • /
    • 2004
  • 에이전트의 '물체 따라가기'는 전통적으로 자동운전이나 가이드 등의 다양한 서비스를 제공할 수 있는 기본적인 기능이다. 여러 가지 물체가 있는 환경에서 '물체 따라가기'를 하기 위해서는 목적하는 대상이 어디에 있는지 찾을 수 있어야 하며, 실제 환경에는 사람이나 차와 같이 움직이는 물체들이 존재하기 때문에 다른 물체들을 피할 수 있어야 한다. 그런데 에이전트의 최적화된 피하기 행동은 장애물의 모양과 크기에 따라 다르게 생성될 수 있다. 본 논문에서는 다양한 모양과 크기의 장애물이 있는 환경에서 최적의 피하기 행동을 생성하면서 물체를 추적하기 위해 반응형 에이전트의 행동선택을 강화학습 한다. 여기에서 정확하게 상태를 인식하기 위하여 상태를 추론하고 목표물과 일정거리를 유지하기 위해 베이지안 추론을 이용한다 베이지안 추론은 센서정보를 이용해 확률 테이블을 생성하고 가장 유력한 상황을 추론하는데 적합한 방법이고, 강화학습은 실시간으로 장애물 종류에 따른 상태에서 최적화된 행동을 생성하도록 평가함수를 제공하기 때문에 베이지안 추론과 강화학습의 결합모델로 장애물에 따른 최적의 피하기 행동을 생성할 수 있다. Webot을 이용한 시뮬레이션을 통하여 다양한 물체가 존재하는 환경에서 목적하는 대상을 따라가면서 이종의 움직이는 장애물을 최적화된 방법으로 피할 수 있음을 확인하였다.

  • PDF

Application of Bayesian network for farmed eel safety inspection in the production stage (양식뱀장어 생산단계 안전성 조사를 위한 베이지안 네트워크 모델의 적용)

  • Seung Yong Cho
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.459-471
    • /
    • 2023
  • The Bayesian network (BN) model was applied to analyze the characteristic variables that affect compliance with safety inspections of farmed eel during the production stage, using the data from 30,063 cases of eel aquafarm safety inspection in the Integrated Food Safety Information Network (IFSIN) from 2012 to 2021. The dataset for establishing the BN model included 77 non-conforming cases. Relevant HACCP data, geographic information about the aquafarms, and environmental data were collected and mapped to the IFSIN data to derive explanatory variables for nonconformity. Aquafarm HACCP certification, detection history of harmful substances during the last 5 y, history of nonconformity during the last 5 y, and the suitability of the aquatic environment as determined by the levels of total coliform bacteria and total organic carbon were selected as the explanatory variables. The highest achievable eel aquafarm noncompliance rate by manipulating the derived explanatory variables was 24.5%, which was 94 times higher than the overall farmed eel noncompliance rate reported in IFSIN between 2017 and 2021. The established BN model was validated using the IFSIN eel aquafarm inspection results conducted between January and August 2022. The noncompliance rate in the validation set was 0.22% (15 nonconformances out of 6,785 cases). The precision of BN model prediction was 0.1579, which was 71.4 times higher than the non-compliance rate of the validation set.

Construction of Robust Bayesian Network Ensemble using a Speciated Evolutionary Algorithm (종 분화 진화 알고리즘을 이용한 안정된 베이지안 네트워크 앙상블 구축)

  • Yoo Ji-Oh;Kim Kyung-Joong;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1569-1580
    • /
    • 2004
  • One commonly used approach to deal with uncertainty is Bayesian network which represents joint probability distributions of domain. There are some attempts to team the structure of Bayesian networks automatically and recently many researchers design structures of Bayesian network using evolutionary algorithm. However, most of them use the only one fittest solution in the last generation. Because it is difficult to combine all the important factors into a single evaluation function, the best solution is often biased and less adaptive. In this paper, we present a method of generating diverse Bayesian network structures through fitness sharing and combining them by Bayesian method for adaptive inference. In order to evaluate performance, we conduct experiments on learning Bayesian networks with artificially generated data from ASIA and ALARM networks. According to the experiments with diverse conditions, the proposed method provides with better robustness and adaptation for handling uncertainty.

Modeling User Preference based on Bayesian Networks for Office Event Retrieval (사무실 이벤트 검색을 위한 베이지안 네트워크 기반 사용자 선호도 모델링)

  • Lim, Soo-Jung;Park, Han-Saem;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.6
    • /
    • pp.614-618
    • /
    • 2008
  • As the multimedia data increase a lot with the rapid development of the Internet, an efficient retrieval technique focusing on individual users is required based on the analyses of such data. However, user modeling services provided by recent web sites have the limitation of text-based page configurations and recommendation retrieval. In this paper, we construct the user preference model with a Bayesian network to apply the user modeling to video retrieval, and suggest a method which utilizes probability reasoning. To do this, context information is defined in a real office environment and the video scripts acquired from established cameras and annotated the context information manually are used. Personal information of the user, obtained from user input, is adopted for the evidence value of the constructed Bayesian Network, and user preference is inferred. The probability value, which is produced from the result of Bayesian Network reasoning, is used for retrieval, making the system return the retrieval result suitable for each user's preference. The usability test indicates that the satisfaction level of the selected results based on the proposed model is higher than general retrieval method.

Pedestrian-Based Variational Bayesian Self-Calibration of Surveillance Cameras (보행자 기반의 변분 베이지안 감시 카메라 자가 보정)

  • Yim, Jong-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1060-1069
    • /
    • 2019
  • Pedestrian-based camera self-calibration methods are suitable for video surveillance systems since they do not require complex calibration devices or procedures. However, using arbitrary pedestrians as calibration targets may result in poor calibration accuracy due to the unknown height of each pedestrian. To solve this problem in the real surveillance environments, this paper proposes a novel Bayesian approach. By assuming known statistics on the height of pedestrians, we construct a probabilistic model that takes into account uncertainties in both the foot/head locations and the pedestrian heights, using foot-head homology. Since solving the model directly is infeasible, we use variational Bayesian inference, an approximate inference algorithm. Accordingly, this makes it possible to estimate the height of pedestrians and to obtain accurate camera parameters simultaneously. Experimental results show that the proposed algorithm is robust to noise and provides accurate confidence in the calibration.

Development of Quantitative Risk Assessment Methodology for the Maritime Transportation Accident of Merchant Ship (상선 운항 사고의 양적 위기평가기법 개발)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.9-19
    • /
    • 2009
  • This paper describes empirical approach methodology for the quantitative risk assessment of maritime transportation accident (MTA) of a merchant ship. The principal aim of this project is to estimate the risk of MTA that could degrade the ship safety by analyzing the underlying factors contributing to MTA based on the IMO's Formal Safety Assessment techniques and, by assessing the probabilistic risk level of MTA based on the quantitative risk assessment methodology. The probabilistic risk level of MTA to Risk Index (RI) composed with Probability Index (PI) and Severity Index (SI) can be estimated from proposed Maritime Transportation Accident Model (MTAM) based on Bayesian Network with Bayesian theorem Then the applicability of the proposed MTAM can be evaluated using the scenario group with 355 core damaged accident history. As evaluation results, the correction rate of estimated PI, $r_{Acc}$ is shown as 82.8%, the over ranged rate of PI variable sensitivity with $S_p{\gg}1.0$ and $S_p{\ll}1.0$ is shown within 10%, the averaged error of estimated SI, $\bar{d_{SI}}$ is shown as 0.0195 and, the correction rate of estimated RI, $r_{Acc}$(%), is shown as 91.8%. These results clearly shown that the proposed accident model and methodology can be use in the practical maritime transportation field.