• 제목/요약/키워드: 베이지안 통계기법

검색결과 60건 처리시간 0.024초

나이브베이즈 문서분류시스템을 위한 선택적샘플링 기반 EM 가속 알고리즘 (Accelerating the EM Algorithm through Selective Sampling for Naive Bayes Text Classifier)

  • 장재영;김한준
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.369-376
    • /
    • 2006
  • 본 논문은 온라인 전자문서환경에서 전통적 베이지안 통계기반 문서분류시스템의 분류성능을 개선하기 위해 EM(Expectation Maximization) 가속 알고리즘을 접목한 방법을 제안한다. 기계학습 기반의 문서분류시스템의 중요한 문제 중의 하나는 양질의 학습문서를 확보하는 것이다. EM 알고리즘은 소량의 학습문서집합으로 베이지안 문서분류 알고리즘의 성능을 높이는데 활용된다. 그러나 EM 알고리즘은 최적화 과정에서 느린 수렴성과 성능 저하 현상을 나타내는데, EM 알고리즘의 기본 가정을 따르지 않는 온라인 전자문서환경에서 특히 그러하다. 제안 기법의 주요 아이디어는 전통적 EM 알고리즘을 개선하기 위해 불확정성도 기반 선택적 샘플링 기법을 활용한 것이다. 성능평가를 위해 Reuter-21578 문서집합을 사용하여, 제안 알고리즘의 빠른 수렴성을 보이고 전통적 베이지안 알고리즘의 분류 정확성을 향상시켰음을 보인다.

지구물리 자료의 고속 베이지안 역산 (Fast Bayesian Inversion of Geophysical Data)

  • 오석훈;권병두;남재철;이덕기
    • 지구물리
    • /
    • 제3권3호
    • /
    • pp.161-174
    • /
    • 2000
  • 베이지안 역산(Bayesian inversion)은 불충분한 자료를 가지고 지하구조를 추정해야 하는 지구물리자료의 해석에 있어서 안정적이고 신뢰를 줄 수 있는 방법 중의 하나이다. 관측 자료가 측정 과정부터 불확실성을 함유하고 있으며, 역산에 이용되는 이론 자료 또한 모델의 매개변수화에 따른 각종 불확실성을 포함하고 있다. 따라서 지구물리 자료의 역산은 확률적으로 접근하는 것이 가장 바람직하며 베이지안 역산은 이에 대한 처리뿐만 아니라, 추정에 대한 신뢰도와 불확실성에 대한 이론적 근거를 제공한다. 그러나 대부분의 베이지안 역산이 고차원의 적분을 필요로 하므로 몬테 카를로 방법과 같은 대규모의 계산이 요구되는 방법에 의해 사후 확률분포가 구해지는 경우가 많다. 이는 특히 지구물리 자료와 같이 고도의 비선형 자료에 대하여 매우 적합한 접근 방법이기는 하지만, 점차 현장화, 고속화되어가는 자료의 해석 경향에 맞추어 간략하게 사후 확률분포를 근사한 수 있는 기법의 연구 또한 필요하다. 따라서 이 연구에서는 관측자료와 사전 확률분포가 정규분포에 의해 근사 될 수 있는 지구물리자료에 대한 베이지안 역산에 대해 논의 하고자 한다. 사전 확률분포의 작성을 위해 지구통계학적 기법이 이용되었으며, 관측자료의 통계적 불화실성을 추정하기 위해 교차 검사(cross-validation) 방법을 이용하여 공분산(covariance)을 유도하고 그것에 의한 우도 함수(likelihood function)를 작성하였다. 베이지안 해석을 위해 두 확률분포를 곱하여 근사적인 사후 확률분포를 얻을 수 있었으며, 이에 대해 최적화(optimization) 기법을 이용하여 최대 사후 확률(Maximum a Posterior)을 따르는 지하 구조를 얻을 수 있었다. 또한 사후 확률 분포의 공분산 항을 이용하여 지하 비저항 구조를 시뮬레이션 하여 불확실성분석을 수행하였다.

  • PDF

제로팽창 음이항 회귀모형에 대한 베이지안 추론 (Bayesian Inference for the Zero In ated Negative Binomial Regression Model)

  • 심정숙;이동희;정병철
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.951-961
    • /
    • 2011
  • 본 논문에서는 제로팽창 음이항(ZINB) 회귀모형에서 회귀계수에 대한 추론방법으로 마코프체인몬테카를로(MC MC) 기법을 이용한 베이지안 추론방법을 제안하였다. 본 연구에서 고려한 ZINB 회귀모형은 반응변수의 평균뿐만 아니라 제로팽창확률에 대한 회귀모형을 고려한 것으로서 Jang, et al.(2010)의 연구를 확장한 것이다. 아울러 실제사례에 본 연구에서 제안한 베이지안 추론방법을 적용하고 과대산포를 허용하지 않는 제로팽창 포아송(ZIP) 회귀모형과 적합결과를 DIC를 이용하여 비교하였다. 실제 사례분석 결과 ZINB 회귀모형의 DIC가 ZIP모형보다 작게 나타나 ZINB 회귀모형이 ZIP 회귀모형보다 잘 적합되었음을 알 수 있었다.

다변량 비대칭 라플라스 점프확산 모형의 베이지안 추론 (Bayesian inference on multivariate asymmetric jump-diffusion models)

  • 이영은;박태영
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.99-112
    • /
    • 2016
  • 비대칭 점프확산 모형은 자산 가격의 비대칭적 변동을 효과적으로 설명하는 모형으로 활용되어 왔다. 그러나 다변량 모형으로 확장한 다변량 비대칭 라플라스 점프확산 모형은 가능도함수가 닫힌 해로 존재하지 않아 모형의 추론에 한계가 존재하였다. 본 논문에서는 이러한 한계점을 극복하기 위해 자료 확장 기법을 제안하고 새로운 베이지안 추론 방법을 개발한다. 본 논문에서 제안된 모형은 단일 점프와 공통 점프 뿐만 아니라 모든 가능한 조합으로 발생하는 점프를 반영한 확장된 다변량 비대칭 라플라스 점프확산 모형이다. 이러한 모형을 분석하기 위해 붕괴된 깁스 샘플러를 고안한 베이지안 방법을 개발하였다. 본 논문에서 제안된 모형과 방법을 모의실험 자료 및 2005년 1월 3일부터 2015년 9월 30일까지 관찰된 일별 KOSPI, S&P500, 그리고 Nikkei225에 적용하여 효율성을 검증하였다.

확률응답모형에 관한 연구 (Study to the randomized response model)

  • 이영진
    • 응용통계연구
    • /
    • 제4권2호
    • /
    • pp.179-193
    • /
    • 1991
  • 이 논문에서는 1960년대에 S. Warner에 의해 제시되었던 다양한 PR 기법을 소개하고 그 것들에 대한 최우추정량을 검토하였다. 이 논문의 주요 주제 중 하나는 Warner 모형, 무관질문 모형, 다앙응담모형을 선형모형으로 표현하는 것이다. 또 다른 주제는 PR 모형의 추론을 연구함에 있어서 베이지안 접근 방법을 이용하여 고찰하는 것이다.

  • PDF

베이지안 공액 사전분포를 이용한 키워드 데이터 분석 (Keyword Data Analysis Using Bayesian Conjugate Prior Distribution)

  • 전성해
    • 한국콘텐츠학회논문지
    • /
    • 제20권6호
    • /
    • pp.1-8
    • /
    • 2020
  • 빅데이터 분석에서 텍스트 데이터의 활용이 증가하고 있다. 따라서 텍스트 데이터의 분석 기법에 관한 많은 연구가 이루어지고 있다. 본 논문에서는 텍스트 데이터로부터 추출된 키워드 데이터의 분석을 위하여 공액사전분포 기반의 베이지안 학습 방법이 연구된다. 베이지안 통계학은 기존의 데이터에 새로운 데이터가 추가될 때마다 모수를 갱신하는 데이터 학습을 제공하기 때문에 시간에 따라 대용량의 데이터가 생성 및 추가되는 빅데이터 환경에서 효율적인 방법을 제공한다. 제안 방법의 성능과 적용 가능성을 보이기 위하여 실제 특허 빅데이터를 전처리하여 구축된 정형화된 키워드 데이터를 분석하는 사례연구를 수행한다.

비이진 내재적 피드백 자료를 위한 변형된 베이지안 개인화 순위 방법 (Modified Bayesian personalized ranking for non-binary implicit feedback)

  • 김동우;이은령
    • 응용통계연구
    • /
    • 제30권6호
    • /
    • pp.1015-1025
    • /
    • 2017
  • 베이지안개인화순위(Bayesian personalized ranking) 방법은 내재적 피드백 자료를 분석하는 최첨단 추천시스템 통계기법 중 하나이다. 하지만, 기존의 베이지안개인화순위 방법은 내재적 피드백 자료를 변환한 이진 자료만을 고려하기 때문에 정보의 손실이 있을 수 있다는 단점이 있다. 이를 해결하기 위해 본 논문에서는 내재적 피드백 자료의 수치적 크기에 기반한 확실함의 정도(level of confidence)를 고려하는 변형베이지안개인화순위 방법을 제안한다. 제안한 방법은 기존 방법처럼 상품간의 개인선호도에 관한 직관적인 확률모형 구조를 여전히 지니면서 내재적 피드백의 수치적 크기를 확실함의 정도로 반영할 수 있다는 점에서 유용하다. 또한 제안한 변형 베이지안개인화순위 방법을 수치적으로 구현하기 위해 확률그라디언트하강(stochastic gradient descent) 기법에 기반한 계산 알고리즘을 제시한다. 마지막으로, 스팀 비디오 게임 실제 데이터 분석을 통하여 기존방법에 비해 우수한 성능을 입증한다.

베이지안 망을 이용한 통행발생 모형의 설계 및 구축 (Design and Implementation of Trip Generation Model Using the Bayesian Networks)

  • 김현기;이상민;김강수
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.79-90
    • /
    • 2004
  • 베이지안 망(Bayesian Networks)은 인공 신경망, 유전자 알고리즘, 전문가시스템 퍼지이론 등과 더불어 데이터마이닝의 중요한 기법 중의 하나로서, 베이지안 통계 이론(Bayesian Statistics Theory)을 적용하여 변수들간의 확률적인 관계를 기호화함으로써, 설명변수들과 종속변수들간의 인과관계를 파악할 수 있다. 이 연구는 2002년도 수도권 가구통행실태조사 자료의 가구, 개인 및 통행 특성(가구수입, 승용차 보유대수, 주택규모, 통행목적 등)을 반영하여, 베이지안 망을 이용한 통행발생 모형을 처음으로 설계 구축하여, 각 변수들간의 상관관계와 인과관계를 분석함으로써, 설명변수인 가구수입의 구성비가 변하였을 때 승용차 보유대수와 주택규모 구성비의 변화율(확률)을 예측한다. 그리고 승용차 보유대수와 주택규모의 구성비가 변하였을 때 통행목적 구성비의 확률을 예측한다. 또한 동행목적의 발생량이 변화였을 때, 가구 특성 구성비의 변화에 따른 발생량을 예측한다. 따라서, 이 연구는 현실에는 존재하지만 설명변수들간의 복잡한 상관성을 배제하고 설명변수와 통행목적간의 단순한 직선관계를 가정하는 기존 통행발생 모형의 한계를 극복할 수 있는 가능성을 제시한다. 또한 선택되지 않은 통행목적에 대한 정보의 부족으로 인한 통행발생 모형 구축의 어려움을 극복한다. 또한 통행목적의 변화를 실시간으로 모의실험(Simulation) 할 수 있는 방법론을 개발하여 다양한 교통정책에 확대 적용할 수 있을 것이다.

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용 (A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior)

  • 김연경;황범석
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.287-301
    • /
    • 2018
  • 0이 과도하게 많이 나타나는 자료는 여러 다양한 분야에서 흔히 볼 수 있다. 이러한 자료들을 분석할 때 대표적으로 영과잉 포아송 모형이 사용된다. 특히 반응변수들 사이에 상관관계가 존재할 때에는 랜덤효과를 영과잉 포아송 모형에 도입해서 분석해야 한다. 이러한 모형은 주로 빈도론자들의 접근방법으로 분석되어왔는데, 최근에는 베이지안 기법을 사용한 분석도 다양하게 발전되어 왔다. 본 논문에서는 반응변수들 사이에 상관관계가 존재하는 경우 랜덤효과가 포함된 영과잉 포아송 회귀모형을 베이지안 추론 방법을 토대로 제안하였다. 이 모형의 적합성을 판단하기 위해 모의 실험을 통해 랜덤효과를 고려하지 않은 모형과 비교 분석하였다. 또한, 실제 지역사회 건강조사 흡연 자료에 직접 응용하여 그 결과를 살펴보았다.