• Title/Summary/Keyword: 베이지안 분류기

Search Result 78, Processing Time 0.03 seconds

Prediction of future drought in Korea using dynamic Bayesian classifier and bivariate drought frequency analysis (동적 베이지안 분류기와 이변량 가뭄빈도분석을 통한 우리나라 미래 가뭄 전망)

  • Hyeok Kim;Min Ji Kim;Tae-Woong Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.193-193
    • /
    • 2023
  • 여러 기후변화 시나리오에 의하면 기상재해의 발생빈도 및 강도가 증가할 것으로 예상된다. 그중 가뭄은 강수량 부족, 하천유량 감소, 토양 함수량 감소, 용수 수요량 증가 등의 다양한 요인으로 인해 발생하며, 한 가지 형태뿐만 아니라 복합적인 형태로 발생할 수 있다. 또한, 우리나라는 지역마다 기후 특성의 편차가 있어 기후변화에 따른 가뭄 취약성과 대응 능력이 지역마다 다르게 나타난다. 따라서 가뭄에 대응하기 위해서는 다양한 요인을 고려한 통합가뭄지수를 활용해야 하며, 미래의 기후변화를 고려하여 종합적으로 가뭄을 평가해야 한다. 본 연구에서는 동적 베이지안 분류기(DNBC) 기반의 통합가뭄지수를 활용하여 우리나라 전국에 대해 수문학적 위험도를 분석하고 미래 가뭄을 전망하였다. 기상학적, 수문학적, 농업적 및 사회경제적 요인을 고려한 통합가뭄지수를 산정하기 위하여 DNBC 분류기의 인자로 기후변화 시나리오 기반의 기상학적 가뭄지수 SPI, 수문학적 가뭄지수 SDI, 농업적 가뭄지수 ESI와 사회경제적 가뭄지수 WSCI를 활용하였다. 산정된 통합가뭄지수의 시계열을 기반으로 심도와 지속기간을 추출하고, 코플라 함수를 활용한 이변량 가뭄빈도분석을 수행하였다. 이후, 이변량 가뭄빈도분석에 의해 산정된 재현기간을 활용하여 수문학적 위험도를 산정하였다. 그 결과, P1(2021~2040) 기간이 수문학적 위험도 R=0.588로 가장 높은 위험도를 나타냈으며, 이후 P2(2041~2070) 기간까지 감소하였다가 P3(2071~2099) 기간에 다시 증가하는 추세를 보였다. P1(2021~2040) 기간과 P3(2071~2099) 기간은 영산강 유역이 각각 R=0.625(P1), R=0.550(P3)으로 가장 높은 위험도를 나타냈으나, P2(2041~2070) 기간은 금강 유역이 수문학적 위험도 R=0.482로 가장 높게 나타났다. 본 연구결과를 통해 향후 미래 가뭄에 대한 가뭄계획 수립 시에 기초자료로서 활용성이 높을 것으로 기대된다.

  • PDF

Object Detection and Tracking using Bayesian Classifier in Surveillance (서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적)

  • Kang, Sung-Kwan;Choi, Kyong-Ho;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.297-302
    • /
    • 2012
  • In this paper, we present a object detection and tracking method based on image context analysis. It is robust from the image variations such as complicated background, dynamic movement of the object. Image context analysis is carried out using the hybrid network of k-means and RBF. The proposed object detection employs context-driven adaptive Bayesian framework to relive the effect due to uneven object images. The proposed method used feature vector generator using 2D Haar wavelet transform and the Bayesian discriminant method in order to enhance the speed of learning. The system took less time to learn, and learning in a wide variety of data showed consistent results. After we developed the proposed method was applied to real-world environment. As a result, in the case of the object to detect pass outside expected area or other changes in the uncertain reaction showed that stable. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

Nomogram comparison conducted by logistic regression and naïve Bayesian classifier using type 2 diabetes mellitus (T2D) (제 2형 당뇨병을 이용한 로지스틱과 베이지안 노모그램 구축 및 비교)

  • Park, Jae-Cheol;Kim, Min-Ho;Lee, Jea-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • In this study, we fit the logistic regression model and naïve Bayesian classifier model using 11 risk factors to predict the incidence rate probability for type 2 diabetes mellitus. We then introduce how to construct a nomogram that can help people visually understand it. We use data from the 2013-2015 Korean National Health and Nutrition Examination Survey (KNHANES). We take 3 interactions in the logistic regression model to improve the quality of the analysis and facilitate the application of the left-aligned method to the Bayesian nomogram. Finally, we compare the two nomograms and examine their utility. Then we verify the nomogram using the ROC curve.

Prognostic Modeling of Metabolic Syndrome Using Bayesian Networks (베이지안 네트워크를 이용한 대사증후군의 예측 모델링)

  • Park Han-Saem;Cho Sung-Bae;Lee Hong Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.292-294
    • /
    • 2005
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말한다. 미국에서는 $25\%$ 이상의 성인이 대사성 증후군인 것으로 알려져 있으며, 경제 여건의 향상 및 식생활 습관의 변화와 함께 최근 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되고 있는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학 분야에서 지식 발견, 데이터 마이닝을 위한 도구로 유용하게 사용되고 있다. 본 논문에 서 는 대사증후군을 예측하는 문제를 다루며, 베이지안 네트워크와 의학 지식을 이용한 대사증후군의 예측 모델을 제안한다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행하였으며, 실험 결과 다층 신경망, k-최근접 이웃 등의 분류기 보다 높은 $81.5\%$의 예측율을 보였다.

  • PDF

Bookmark Classification Agent Based on Naive Bayesian Learning Method (나이브 베이지안 학습법에 기초한 북마크 분류 에이전트)

  • 최정민;김인철
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.405-408
    • /
    • 2000
  • 최근 인터넷의 발전으로 많은 정보와 지식을 우리는 인터넷에서 제공받을 수 있게되었다. 인터넷에 존재하는 정보는 수많은 웹서버에 산재되어 있으며, 정보의 위치는 주소(URL)를 가지고 존재하게 되는데 사용자는 자신이 관심있는 정보의 주소를 저장하기 위하여 웹브라우저 북마크(Bookmark)기능을 사용한다. 그러나 북마크 기능은 웹문서의 주소 저장에 일차적인 목적을 두고 있으며, 이후 북마크의 개수가 증가하면, 사용자는 북마크관리가 어렵게되므로 사용자 북마크 파일을 자동으로 분류하여 관리할수 있는 에이전트 기술을 사용하고자 한다. 대표적인 분류에이전트 시스템으로는 전자우편 분류 에이전트인 Maxims, 뉴스기사 분류 에이전트인 NewT, 엔터테인먼트(Entertainment) 선별 에이전트인 Ringo 등이 있다. 이러한 시스템들은 분류할 대상에 따라 조금씩 다른 모습의 에이전트 기능을 보이고 있으며, 본 논문은 기계학습 이론중 교사학습 알고리즘인 나이브 베이지안 학습방법(Naive Bayesian Learning method)을 사용하여 사용자가 분류하지 못한 북마크를 자동으로 분류하는 단일 에이전트 기반 북마크 분류기를 설계, 구현하고자한다.

  • PDF

Bayesian Network-based Data Analysis for Diagnosing Retinal Disease (망막 질환 진단을 위한 베이지안 네트워크에 기초한 데이터 분석)

  • Kim, Hyun-Mi;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2013
  • In this paper, we suggested the possibility of using an efficient classifier for the dependency analysis of retinal disease. First, we analyzed the classification performance and the prediction accuracy of GBN (General Bayesian Network), GBN with reduced features by Markov Blanket and TAN (Tree-Augmented Naive Bayesian Network) among the various bayesian networks. And then, for the first time, we applied TAN showing high performance to the dependency analysis of the clinical data of retinal disease. As a result of this analysis, it showed applicability in the diagnosis and the prediction of prognosis of retinal disease.

A Study on Anomalous Propagation Echo Identification using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 이상전파에코 식별방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.89-90
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo all over the world. This paper conducts researches about a classification method which can distinguish anomalous propagation echo in the radar data using naive Bayes classifier and unique attributes of the echo such as reflectivity, altitude, and so on. It is confirmed that the fine classification results are derived by verifying the suggested naive Bayes classifier using actual appearance cases of the echo.

  • PDF

A Hierarchical CPV Solar Generation Tracking System based on Modular Bayesian Network (베이지안 네트워크 기반 계층적 CPV 태양광 추적 시스템)

  • Park, Susang;Yang, Kyon-Mo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.481-491
    • /
    • 2014
  • The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.

Constrained Learning Method of Bayesian Network Structure for Efficient Context Classification (효율적인 컨텍스트 분류를 위한 베이지안 네트워크 구조의 제한 학습)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.112-114
    • /
    • 2004
  • 지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.

  • PDF

Improving Multinomial Naive Bayes Text Classifier (다항시행접근 단순 베이지안 문서분류기의 개선)

  • 김상범;임해창
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.3_4
    • /
    • pp.259-267
    • /
    • 2003
  • Though naive Bayes text classifiers are widely used because of its simplicity, the techniques for improving performances of these classifiers have been rarely studied. In this paper, we propose and evaluate some general and effective techniques for improving performance of the naive Bayes text classifier. We suggest document model based parameter estimation and document length normalization to alleviate the Problems in the traditional multinomial approach for text classification. In addition, Mutual-Information-weighted naive Bayes text classifier is proposed to increase the effect of highly informative words. Our techniques are evaluated on the Reuters21578 and 20 Newsgroups collections, and significant improvements are obtained over the existing multinomial naive Bayes approach.