• Title/Summary/Keyword: 베이지안 네트워크 구조

Search Result 46, Processing Time 0.038 seconds

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

Bayesian Network Modeling based on Ontology for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 온톨로지 기반 베이지안 네트워크 모델링)

  • Song Youn-Suk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.112-114
    • /
    • 2006
  • 최근 영상 인식 정보를 서비스 로봇 도메인에서 사용하기 위한 연구와 함께 전통적인 영상 인식 방법의 성능을 높이기 위한 연구가 진행되고 있다. 기존의 방법들은 기하학적 모델을 기반으로 예측 가능한 환경에서 상황을 인식하였기에 이를 실내 환경과 같은 동적인 환경에 적용하는 것은 정확도나 인식의 효율 면에서 한계를 갖는다. 이에 지식 기반 접근 방법을 통해 정확도를 항상 시키거나 계산 비용을 감소시킴으로써 영상 인식성능을 높이기 위한 다양한 연구가 있어 왔다. 본 논문에서는 서비스 로봇이 물체를 탐색할 때, 대상 물체가 다른 물체에 의해 가려짐으로써 발생하는 불확실한 상황을 해결하기 위한 방법을 제안한다. 제안하는 방법은 발견된 물체를 컨텍스트 정보로 사용하여 대상 물체의 존재 여부를 추론하며, 이를 위해 신뢰도를 모델링할 수 있는 확률적 모델인 베이지안 네트워크와 도메인 지식을 모델링 할 수 있는 온톨로지를 함께 사용한다. 효과적인 모델링을 위해 본 논문에서는 기본적인 물체 관계를 모듈화 하여 설계하기 위한 베이지안 네트워크 구조와 확률 값 선정 방법. 이들을 온톨로지를 기반으로 주어진 상창에 따라 결합하는 방법을 제안한다. 이는 물체 관계를 모델링할 때 발생하는 중복 설계를 감소시켜주고 유지 및 보수를 용이하게 한다. 설계된 추론 모듈은 실험 결과 5가지 장소에서 높은 정확도를 보여주었다.

  • PDF

Constrained Learning Method of Bayesian Network Structure for Efficient Context Classification (효율적인 컨텍스트 분류를 위한 베이지안 네트워크 구조의 제한 학습)

  • 황금성;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.112-114
    • /
    • 2004
  • 지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.

  • PDF

A Constrained Learning Method based on Ontology of Bayesian Networks for Effective Recognition of Uncertain Scenes (불확실한 장면의 효과적인 인식을 위한 베이지안 네트워크의 온톨로지 기반 제한 학습방법)

  • Hwang, Keum-Sung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.549-561
    • /
    • 2007
  • Vision-based scene understanding is to infer and interpret the context of a scene based on the evidences by analyzing the images. A probabilistic approach using Bayesian networks is actively researched, which is favorable for modeling and inferencing cause-and-effects. However, it is difficult to gather meaningful evidences sufficiently and design the model by human because the real situations are dynamic and uncertain. In this paper, we propose a learning method of Bayesian network that reduces the computational complexity and enhances the accuracy by searching an efficient BN structure in spite of insufficient evidences and training data. This method represents the domain knowledge as ontology and builds an efficient hierarchical BN structure under constraint rules that come from the ontology. To evaluate the proposed method, we have collected 90 images in nine types of circumstances. The result of experiments indicates that the proposed method shows good performance in the uncertain environment in spite of few evidences and it takes less time to learn.

Multi-dimension Categorical Data with Bayesian Network (베이지안 네트워크를 이용한 다차원 범주형 분석)

  • Kim, Yong-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.169-174
    • /
    • 2018
  • In general, the methods of the analysis of variance(ANOVA) for the continuous data and the chi-square test for the discrete data are used for statistical analysis of the effect and the association. In multidimensional data, analysis of hierarchical structure is required and statistical linear model is adopted. The structure of the linear model requires the normality of the data. A multidimensional categorical data analysis methods are used for causal relations, interactions, and correlation analysis. In this paper, Bayesian network model using probability distribution is proposed to reduce analysis procedure and analyze interactions and causal relationships in categorical data analysis.

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

Future inflow projection based on Bayesian optimization for hyper-parameters (하이퍼매개변수 베이지안 최적화 기법을 적용한 미래 유입량 예측)

  • Tran, Trung Duc;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.347-347
    • /
    • 2022
  • 최근 데이터 사이언스의 비약적인 발전과 함께 다양한 형태의 딥러닝 알고리즘이 개발되어 수자원 분야에도 적용되고 있다. 이 연구에서는 LSTM(Long Short-Term Memory) 네트워크와 BO-LSTM이라는 베이지안 최적화(BO) 기술을 결합하여 일단위 앙상블 미래 댐유입량을 projection하는 딥 러닝 모델을 제안하였다. BO-LSTM 하이퍼파라미터 및 손실 함수는 베이지안 최적화 기법을 통해 훈련 및 최적화되며, BO 접근법은 모델의 하이퍼파라미터와 손실 함수를 높은 정확도로 빠르게 최적화할 수 있었다(R=0.92 및 NSE=0.85). 또한 미래 댐 유입량을 예측하기 위한 LSTM의 구조는 Forecasting 모형과 Proiection 모형으로 구분하여 두 모형의 장단점을 분석하였으며, 본 연구의 결과로부터 데이터 처리 단계가 모델 훈련의 효율성을 높이고 노이즈를 줄이는 데 효과적이고 미래 예측에 있어 LSTM 구조에 따른 영향을 확인할 수 있었다. 본 연구는 소양강 유역, 2020-2100년 기간 동안의 미래 예측에 적용되었다. 전반적으로, CIMIP6 데이터에 따르면 10%에서 50%의 미래 유입량 증가가 발생하는 것으로 확인되었으며, 이는 미래 강수량의 증가의 폭과 유사함을 확인하였다. 유입량 산정에 있어 신뢰할 수 있는 예측은 저수지 운영, 계획 및 관리에 있어 정책 입안자와 운영자에게 도움이 될 것입니다.

  • PDF

On-line Bayesian Learning based on Wireless Sensor Network (무선 센서 네트워크에 기반한 온라인 베이지안 학습)

  • Lee, Ho-Suk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06d
    • /
    • pp.105-108
    • /
    • 2007
  • Bayesian learning network is employed for diverse applications. This paper discusses the Bayesian learning network algorithm structure which can be applied in the wireless sensor network environment for various online applications. First, this paper discusses Bayesian parameter learning, Bayesian DAG structure learning, characteristics of wireless sensor network, and data gathering in the wireless sensor network. Second, this paper discusses the important considerations about the online Bayesian learning network and the conceptual structure of the learning network algorithm.

  • PDF

Fault Localization for Self-Managing Based on Bayesian Network (베이지안 네트워크 기반에 자가관리를 위한 결함 지역화)

  • Piao, Shun-Shan;Park, Jeong-Min;Lee, Eun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.137-146
    • /
    • 2008
  • Fault localization plays a significant role in enormous distributed system because it can identify root cause of observed faults automatically, supporting self-managing which remains an open topic in managing and controlling complex distributed systems to improve system reliability. Although many Artificial Intelligent techniques have been introduced in support of fault localization in recent research especially in increasing complex ubiquitous environment, the provided functions such as diagnosis and prediction are limited. In this paper, we propose fault localization for self-managing in performance evaluation in order to improve system reliability via learning and analyzing real-time streams of system performance events. We use probabilistic reasoning functions based on the basic Bayes' rule to provide effective mechanism for managing and evaluating system performance parameters automatically, and hence the system reliability is improved. Moreover, due to large number of considered factors in diverse and complex fault reasoning domains, we develop an efficient method which extracts relevant parameters having high relationships with observing problems and ranks them orderly. The selected node ordering lists will be used in network modeling, and hence improving learning efficiency. Using the approach enables us to diagnose the most probable causal factor with responsibility for the underlying performance problems and predict system situation to avoid potential abnormities via posting treatments or pretreatments respectively. The experimental application of system performance analysis by using the proposed approach and various estimations on efficiency and accuracy show that the availability of the proposed approach in performance evaluation domain is optimistic.

Bayesian Inferrence and Context-Tree Matching Method for Intelligent Services in a Mobile Environment (모바일 환경에서의 지능형 서비스를 위한 베이지안 추론과 컨텍스트 트리 매칭방법)

  • Kim, Hee-Taek;Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • To provide intelligent service in mobile environment, it needs to estimate user's intention or requirement, through analyzing context information of end-users such as preference or behavior patterns. In this paper, we infer context information from uncertain log stored in mobile device. And we propose the inference method of end-user's behavior to match context information with service, and the proposed method is based on context-tree. We adopt bayesian probabilistic method to infer uncertain context information effectively, and the context-tree is constructed to utilize non-numerical context which is hard to handled with mathematical method. And we verify utility of proposed method by appling the method to intelligent phone book service.