• Title/Summary/Keyword: 베이지안 네트워크 구조

Search Result 46, Processing Time 0.029 seconds

Analysis of Web Customers Using Bayesian Belief Networks (베이지안 네트워크를 이용한 전자상거래 고객들의 성향 분석)

  • 양진산;장병탁
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • 전자 상거래에서 고객의 성향을 이해하기 위해서는 일반적으로 판매 실무에서의 경험과 전문적인 지식을 필요로 하게 된다. 데이터 마이닝은 고객들에 대한 데이터의 분석을 통해서 이러한 성향들을 알아내는 것을 목표로 한다. 베이지안 네트워크는 DAG(Directed Acyclic Graph)를 이용하여 데이터의 구조를 시각적으로 표현하여 주는 확률모형으로 변수사이의 종속관계를 밝히고 데이터 마이닝의 기법으로 이용할 수 있다. 본 논문에서는 베이지안 네트워크를 사용하여 전자 상거래 고객들의 성향을 분석하기 위한 방법을 제시한다. 또한 고객성향에 대한 주요 요인을 분석하기 위해 Discriminant 모형을 이용하고 그 유용성을 다른 방법들과 비교하였다.

  • PDF

A Diagnosis Engine Using Bayesian Network for Self-management of Adaptive Middleware (적응형 미들웨어의 자가 진단을 위한 베이지안 네트워크를 사용한 진단엔진)

  • Choi Bo-Yoon;Kim Kyung-Joong;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.220-222
    • /
    • 2006
  • 분산 어플리케이션은 동시에 여러 사용자가 각기 다른 환경에서 동기화된 프로세서를 사용하기 때문에 일정 한 성능을 유지하는 것이 무엇보다 중요하다. 진단엔진은 시스템을 진단하여 시스템 결함의 원인을 발견하여 시스템이 자가치료가 가능하게 한다. 적응형 미들웨어는 진단엔진을 사용해서 분산 어플리케이션이 로컬환경에 맞는 고른 서비스를 유지 할 수 있도록 한다. 본 논문은 베이지안 네트워크를 사용한 적응형 미들웨어의 진단엔진을 제안한다. 베이지안 네트워크는 상황인지분야에서 널리 사용되는 추론기법으로서, 수집 된 데이터를 통해서 그 구조를 학습하고 데이터를 증거 값으로 시스템 진단을 한다. 본 논문은 실험 대상자로부터 윈도우시스템에서 두 시간 동안 데이터를 수집하여 한 시간은 베이지안 네트워크 학습에 사용하고, 나머지는 베이지안 네트워크 성능평가에 사용하였다. 실험 결과 학습된 두 개의 베이지안 네트워크 모델은 각각 95.41%, 99.77%의 정확성을 보였다.

  • PDF

Speciated evolution of Bayesian networks ensembles for robust inference (안정된 추론을 위한 베이지안 네트워크 앙상블의 종분화 진화)

  • 유지오;김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.226-228
    • /
    • 2004
  • 베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델이다. 베이지안 네트워크의 구조를 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화 알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ALARM 네트워크에서 인공적으로 생성한 데이터를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 확인한 수 있었다.

  • PDF

A BN-based Recommendation System Reflecting User's Preference in Mobile Devices (모바일 장비에서 사용자의 선호도를 반영한 베이지안 네트워크 기반 추천 시스템)

  • Park, Moon-Hee;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.277-280
    • /
    • 2007
  • 무선통신의 발달에 따라 모바일 장비 기반의 이동성을 고려한 서비스에 관한 연구가 활발하다. 모바일 장비는 제한된 화면크기, 부족한 리소스 등의 한계와 함께 사용자의 이동 중에 발생하는 이벤트를 처리해야 한다는 문제가 있기 때문에, 사용자에게 친숙한 인터페이스와 개별화된 추천 서비스가 요구된다. 본 논문에서는 사용자의 선호도를 반영한 베이지안 네트워크를 이용하여 모바일 장비에서 개인화된 추천 시스템을 개발한다. 실시간으로 변화하는 환경에 적응하도록 네트워크를 설계하기 위하여 전문가에 의해 구조를 설계하고, 수집된 사용자 로그를 바탕으로 파라메터를 학습하여 베이지안 네트워크 모델을 생성한 후, 학습된 모델 기반의 추론결과를 실제 컨텐츠와 비교하여 시스템에 매핑시킴으로써 사용자에게 추천한다. 실제 신촌지역 음식점 추천을 대상으로 실험한 결과, 그 가능성을 확인할 수 있었다.

  • PDF

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study (인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구)

  • Cheah, Wooi-Ping;Kim, Kyoung-Yun;Yang, Hyung-Jeong;Kim, Soo-Hyung;Kim, Jeong-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

Analysis of Web Customers Using Bayesian Belief Networks (베이지안 네트워크를 이용한 전자상거래 고객들의 성향 분석)

  • 양진산;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.387-392
    • /
    • 2000
  • 전자 상거래에서 고객의 성향을 이해하기 위해서는 일반적으로 판매 실무에서의 경험과 전문적인 지식을 필요로 하게 된다. 데이터 마이닝은 고객들에 대한 데이터의 분석을 통해서 이러한 성향들을 알아내는 것을 목표로 한다. 베이지안 네트워크는 DAG(Directed Acyclic Graph)를 이용하여 데이터의 구조를 시각적으로 표현하여 주는 확률모형으로 변수사이의 종속관계를 밝히고 데이터 마이닝의 기법으로 이용할 수 있다. 본 논문에서는 베이지안 네트워크를 사용하여 전자 상거래 고객들의 성향을 분석하기 위한 방법을 제시한다. 또한 고객성향에 대한 주요 요인을 분석하기 위해 Descriminant 모형을 이용하고 그 유용성을 다른 방법들과 비교하였다.

  • PDF

Context-aware application for smart home based on Bayesian network (베이지안 네트워크에 기반한 스마트 홈에서의 상황인식 기법개발)

  • Jeong, U-Yong;Kim, Eun-Tae;Kim, Dong-Yeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.340-343
    • /
    • 2006
  • 본 논문은 스마트 홈에서 베이지안 네트워크에 기반을 둔 보편성을 가지는 상황인식 시스템의 구현방법을 제안한다. 상호정보를 사용하여 베이지안 네트워크의 구조 학습을 하고, 보다 효율적인 데이터 처리를 위해서 퍼지 클러스터링을 사용하는 방법을 도입한다. 마지막으로 시뮬레이터를 통하여 자료 취득 및 상황인식의 결과를 보인다.

  • PDF

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

Learning Predictive Models of Memory Landmarks based on Attributed Bayesian Networks Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 속성별 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee, Byung-Gil;Lim, Sung-Soo;Cho, Sung-Bae
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.4
    • /
    • pp.535-554
    • /
    • 2009
  • Information collected on mobile devices might be utilized to support user's memory, but it is difficult to effectively retrieve them because of the enormous amount of information. In order to organize information as an episodic approach that mimics human memory for the effective search, it is required to detect important event like landmarks. For providing new services with users, in this paper, we propose the prediction model to find landmarks automatically from various context log information based on attributed Bayesian networks. The data are divided into daily and weekly ones, and are categorized into attributes according to the source, to learn the Bayesian networks for the improvement of landmark prediction. The experiments on the Nokia log data showed that the Bayesian method outperforms SVMs, and the proposed attributed Bayesian networks are superior to the Bayesian networks modelled daily and weekly.

  • PDF