• Title/Summary/Keyword: 베이지안

Search Result 1,006, Processing Time 0.047 seconds

Reducing Uncertainty of Bayesian Networks by Reducing Variances of Probability Distributions (베이지안 네트워크의 불확실성 감소를 위한 확률분포의 분산 감소 방법)

  • Jung, Sung-Won;Lee, Do-Heon;Lee, Kwang-H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.238-243
    • /
    • 2006
  • 베이지안 네트워크는 주어진 변수들 사이의 확률적 의존성을 분석하는 데에 널리 사용되어지고 있는 모델이다. 이러한 베이지안 네트워크의 활용에 있어서 베이지안 네트워크의 확실성을 분석하는 방법의 필요성이 대두되어지고 있다. 특히 규모가 큰 베이지안 네트워크 모델을 특정하는 상황에서 주어질 수 있는 학습 데이터의 수가 제한되는 경우나, 주된 관심사가 베이지안 네트워크의 일부 부분에 한정되는 경우에 베이지안 네트워크의 확실성에 대한 분석은 유용하게 사용될 수 있다. 본 논문에서는, 베이지안 네트워크에 존재할 수 있는 불확실성을 언급한 후, 베이지안 네트워크 내의 변수들이 갖는 확률분포의 분산을 이용해 베이지안 네트워크의 불확실성을 정의하는 방법을 제안한다. 간단한 베이지안 네트워크의 예시 모델을 이용하여 제안된 베이지안 네트워크의 불확실성 분석 방법이 유용할 수 있음을 보인다.

  • PDF

Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm (Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류)

  • Go, Su-Jeong;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF

Automatic Construction of Script-adapt ive Bayesian Networks for Topic-Inference of Conversational Agent (대화형 에이전트의 주제추론을 위한 스크립트 적응적 베이지안 네트워크 자동 생성)

  • 임성수;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.577-579
    • /
    • 2004
  • 인터넷을 통한 정보 제공이 늘어남에 따라서 사용자가 원하는 정보를 손쉽게 얻기 위한 .연구가 활발히 진행되고 있으며. 이러한 연구 중 하나가 대화형 에이전트이다. 최근 대화형 에이전트에서 사용자 질의의 주제 추론을 위하여 베이지안 네트워크가 적용되었다 하지만 베이지안 네트워크의 설계는 많은 시간이 소요되며, 스크립트(대화를 위한 데이터베이스)의 추가 변경시에는 베이지안 네트워크도 같이 수정해야 하는 번거로움이 있어 대화형 에이전트의 확장성을 저해하고 있다. 본 논문에서는 스크립트로부터 베이지안 네트워크를 자동으로 생성하여 베이지안 네트워크를 이용한 대화형 에이전트의 확장성을 높이는 방법을 제안하다. 제안하는 방법은 베이지안 네트워크의 구성 노드를 계층적으로 설계하고. Noisy-OR gate를 사용하여 베이지안 네트워크의 조건부 확률 테이블을 계산한다. 피험자 10명이 대화형 에이전트를 위한 베이지안 네트워크를 수동 설계한 것과 비교하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

Automatic Construction of Hierarchical Bayesian Networks for Topic Inference of Conversational Agent (대화형 에이전트의 주제 추론을 위한 계층적 베이지안 네트워크의 자동 생성)

  • Lim, Sung-Soo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.877-885
    • /
    • 2006
  • Recently it is proposed that the Bayesian networks used as conversational agent for topic inference is useful but the Bayesian networks require much time to model, and the Bayesian networks also have to be modified when the scripts, the database for conversation, are added or modified and this hinders the scalability of the agent. This paper presents a method to improve the scalability of the agent by constructing the Bayesian network from scripts automatically. The proposed method is to model the structure of Bayesian networks hierarchically and to utilize Noisy-OR gate to form the conditional probability distribution table (CPT). Experimental results with ten subjects confirm the usefulness of the proposed method.

미니탭을 이용한 베이지안 통계계산

  • 백호유;김병휘
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.227-228
    • /
    • 2004
  • 최근에 베이지안 통계학은 경제 경영 그리고 의학 뿐 만 아니라 공학 등의 많은 분야에서 그 응용의 정도가 급속히 증가하는 추세이다. 그러나 베이지안 추론 또는 법칙들이 이론적으로 간단하지만 많은 경우 계산상에 어려움 때문에 실제 적용에 어려움이 있다 이러한 상황을 극복하기 위해 간단한 통계 패키지 프로그램인 미니텝을 이용한 여러 가지 적용 방법을 알아본다. 또한 미니탭 매크로의 사용을 원활히 적용함으로써 보다 발전적으로 베이지안 통계 계산을 용이하게 할 수 있다

  • PDF

Development of the Bayesian method and its application to the water resources field (베이지안 기법의 발전 및 수자원 분야에의 적용)

  • Na, Wooyoung;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The Bayesian method is a very useful statistical tool in various fields including water resources. Therefore, in this study, the background of the Bayesian statistics and its application to the water resources field are reviewed. First, the history of the Bayesian method from the birth to the present, and the achievements of Bayesian statisticians are summarized. Next, the derivation of the Bayes' theorem, which is the basis of the Bayesian method, is presented, and the roles of the three elements of the Bayes' theorem: priori distribution, likelihood function, and posteriori distribution are explained. In addition, the unique features and advantages of the Bayesian statistics are summarized. Finally, the cases in water resources where the Bayesian method is applied are summarized by dividing them into several categories. With a prevalence of information and big data in the future, the Bayesian method is expected to be used more actively in the water resources field.

Learning Predictive Model of Memory Landmarks based on Bayesian Network Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 베이지안 네트워크 기반의 랜드마크 예측 모델 학습)

  • Lee Byung-Gil;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.550-552
    • /
    • 2005
  • 유비쿼터스 환경의 발달과 함께 모바일 장비에서 수집되어지는 컨텍스트 로그를 활용한 연구가 활발히 진행되고 있다. 하지만 기존의 컨텍스트 정보를 사용한 연구는 사용자 모델링에 그 초점을 맞추거나 단순하게 수집된 정보를 정리하여 한눈에 알아보기 쉽게 보여주는 정도에 그치고 있다. 본 논문에서는 사용자에게 새로운 서비스를 제공하기 위한 방법으로서 모바일 컨텍스트 로그와 외부 센서를 통해 정보를 수집하여 학습한 베이지안 네트워크를 이용하여 랜드마크를 찾아내는 예측 모델을 제안한다. 베이지안 네트워크 설계는 사전에 수집된 컨텍스트 정보를 요일과 주별로 분류하여 각각에 대한 베이지안 네트워크를 cross validation하여 랜드마크 예측에 대한 정확도를 평가하였다. 그리고 분류에서 가장 많이 사용하고 있는 SVM 방법을 사용하여 제안한 방법과의 성능을 비교평가하였다. 랜드마크 예측에 대한 정확도는 주간별로 설계한 베이지안 네트워크보다 요일별로 설계한 베이지안 네트워크가 랜드마크를 예측하는데 정화도가 높음을 확인하였고, 베이지안 네트워크를 사용한 방법이 SVM을 사용한 방법보다. 예측에 한 정확성이 우수하였다.

  • PDF

Fuzzy Bayesian Network for Fusion of Multimodal Context Information (다양한 형태의 상황 정보 합성을 위한 퍼지 베이지안 네트워크)

  • Yoo Ji-Oh;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.631-633
    • /
    • 2005
  • 다양한 형태의 상황 정보를 결합하여 추론하기 위해 베이지안 네트워크를 많이 사용한다. 그러나 일반 베이지안 네트워크는 각 노드의 상태가 이산적이기 때문에, 연속적이거나 여러 상태가 동시에 존재할 수 있는 현실의 상황 정보를 처리하기 어렵다. 본 논문에서는 이와 같은 베이지안 네트워크의 단점을 보완하기 위해 다양한 형태의 상황 정보를 퍼지를 통해 전처리하여 베이지안 네트워크를 통해 추론하는 퍼지 베이지안 네트워크를 제안한다. 유용성을 보이기 위해 음악 추천 에이전트를 설계하여 일반 베이지안 네트워크와 비교 실험한 결과, 제안한 방법으로 다양한 상황 정보에 대해 유연한 처리가 가능함을 확인하였다.

  • PDF

Weighted Bayesian Automatic Document Categorization Based on Association Word Knowledge Base by Apriori Algorithm (Apriori알고리즘에 의한 연관 단어 지식 베이스에 기반한 가중치가 부여된 베이지만 자동 문서 분류)

  • 고수정;이정현
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2001
  • The previous Bayesian document categorization method has problems that it requires a lot of time and effort in word clustering and it hardly reflects the semantic information between words. In this paper, we propose a weighted Bayesian document categorizing method based on association word knowledge base acquired by mining technique. The proposed method constructs weighted association word knowledge base using documents in training set. Then, classifier using Bayesian probability categorizes documents based on the constructed association word knowledge base. In order to evaluate performance of the proposed method, we compare our experimental results with those of weighted Bayesian document categorizing method using vocabulary dictionary by mutual information, weighted Bayesian document categorizing method, and simple Bayesian document categorizing method. The experimental result shows that weighted Bayesian categorizing method using association word knowledge base has improved performance 0.87% and 2.77% and 5.09% over weighted Bayesian categorizing method using vocabulary dictionary by mutual information and weighted Bayesian method and simple Bayesian method, respectively.

  • PDF

A study of user's anomalous behavior analysis using Bayesian Network and integrated audit data (베이지안 네트워크와 통합 감사 자료를 이용한 사용자의 비정상행위 탐지에 관한 연구)

  • 정일안;노봉남
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2001.11a
    • /
    • pp.269-272
    • /
    • 2001
  • 본 논문에서는 베이지안 네트워크와 통합 감사자료를 이용하여 시스템 사용자에 대한 비정상행위를 탐지하고 분석하는데 효과적인 모델을 제안하고자 한다. 이를 위해 리눅스 시스템에서의 여러 가지 감사자료들을 통합한 감사자료로부터 사용자의 행위에 대해 베이지안 네트워크로 구성하고자 한다. 베이지안 네트워크를 구성할 때 효율적인 학습이 가능한 Sparse Candidate 알고리즘을 적용하고, 감사자료의 일부가 결여되어 있는 경우에도 추론이 가능하도록 MCMC(Markov Chain Monte Carlo)의 일종인 Gibbs Sampling 방법을 적용한다.

  • PDF