• Title/Summary/Keyword: 베이즈요인

Search Result 31, Processing Time 0.029 seconds

Bayesian Model Selection of Lifetime Models using Fractional Bayes Factor with Type ?$\pm$ Censored Data (제2종 중단모형에서 FRACTIONAL BAYES FACTOR를 이용한 신뢰수명 모형들에 대한 베이지안 모형선택)

  • 강상길;김달호;이우동
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.427-436
    • /
    • 2000
  • In this paper, we consider a Bayesian model selection problem of lifetime distributions using fractional Bayes factor with noninformative prior when type II censored data are given. For a given type II censored data, we calculate the posterior probability of exponential, Weibull and lognormal distributions and select the model which gives the highest posterior probability. Our proposed methodology is explained and applied to real data and simulated data.

  • PDF

Indian Buffet Process Inspired Component Analysis for fMRI Data (fMRI 데이터에 적용한 인디언 뷔페 프로세스 닮은 성분 분석법)

  • Kim, Joon-Shik;Kim, Eun-Sol;Lim, Byoung-Kwon;Lee, Chung-Yeon;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.191-194
    • /
    • 2011
  • 문서를 이루는 단어들의 빈도수가 지수법칙(power law)를 따른다는 지프의 법칩(Zipf's law)이 있다. 이러한 단어분포를 고려하여 문서의 토픽을 찾아내는 기계학습법이 디리쉴레 프로세스(Dirichlet process) 이다. 이를 발전시켜서 데이터의 잠재 요인(latent factor)들을 베이즈 확률모델에 기반한 샘플링 바탕으로 찾는 방법이 인디언 뷔페 과정(Indian buffet process) 이다. 우리는 25가지의 특징(feature)들에 대한 점수(rating)들이 볼드(blood oxygen dependent level) 신호와 함께 주어지는 PBAIC 2007 데이터에 주성분 분석법(principal component analysis)를 적용했다. PBAIC 2007 데이터는 비디오 게임을 수행하며 기능적뇌영상(functional magnetic resonance imaging, fMRI) 촬영을 하여 얻어진 공개데이터이다. 우리의 연구에서는 주성분 분석법을 이용하여 10개의 독립 성분(independent component)들을 찾았다. 그리고 1.75초 마다 촬영된 BOLD 신호와 10개의 고유벡터(eigenvector)들간의 내적을 취하여 가중치(weight)를 구하였다. 성분들의 가중치를 낮은 순서로 정렬함으로써 각 시간마다 주도적으로 영향을 미치는 성분들을 알아낼 수 있었다.

A Report on the Inter-Gene Correlations in cDNA Microarray Data Sets (cDNA 마이크로어레이에서 유전자간 상관 관계에 대한 보고)

  • Kim, Byung-Soo;Jang, Jee-Sun;Kim, Sang-Cheol;Lim, Jo-Han
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.617-626
    • /
    • 2009
  • A series of recent papers reported that the inter-gene correlations in Affymetrix microarray data sets were strong and long-ranged, and the assumption of independence or weak dependence among gene expression signals which was often employed without justification was in conflict with actual data. Qui et al. (2005) indicated that applying the nonparametric empirical Bayes method in which test statistics were pooled across genes for performing the statistical inference resulted in the large variance of the number of differentially expressed genes. Qui et al. (2005) attributed this effect to strong and long-ranged inter-gene correlations. Klebanov and Yakovlev (2007) demonstrated that the inter-gene correlations provided a rich source of information rather than being a nuisance in the statistical analysis and they developed, by transforming the original gene expression sequence, a sequence of independent random variables which they referred to as a ${\delta}$-sequence. We note in this report using two cDNA microarray data sets experimented in this country that the strong and long-ranged inter-gene correlations were still valid in cDNA microarray data and also the ${\delta}$-sequence of independence could be derived from the cDNA microarray data. This note suggests that the inter-gene correlations be considered in the future analysis of the cDNA microarray data sets.

Effects of Financial College Tuition Support by Korean Parents using a Hierarchical Bayes Model (계층적 베이즈 모형을 이용한 대학등록금에 대한 부모님의 경제적 지원 영향 분석)

  • Oh, Man-Suk;Oh, Hyun Sook;Oh, Min Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.267-280
    • /
    • 2013
  • College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.

The big data method for flash flood warning (돌발홍수 예보를 위한 빅데이터 분석방법)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.245-250
    • /
    • 2017
  • Flash floods is defined as the flooding of intense rainfall over a relatively small area that flows through river and valley rapidly in short time with no advance warning. So that it can cause damage property and casuality. This study is to establish the flash-flood warning system using 38 accident data, reported from the National Disaster Information Center and Land Surface Model(TOPLATS) between 2009 and 2012. Three variables were used in the Land Surface Model: precipitation, soil moisture, and surface runoff. The three variables of 6 hours preceding flash flood were reduced to 3 factors through factor analysis. Decision tree, random forest, Naive Bayes, Support Vector Machine, and logistic regression model are considered as big data methods. The prediction performance was evaluated by comparison of Accuracy, Kappa, TP Rate, FP Rate and F-Measure. The best method was suggested based on reproducibility evaluation at the each points of flash flood occurrence and predicted count versus actual count using 4 years data.

A Study on the Effects of Online Word-of-Mouth on Game Consumers Based on Sentimental Analysis (감성분석 기반의 게임 소비자 온라인 구전효과 연구)

  • Jung, Keun-Woong;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.145-156
    • /
    • 2018
  • Unlike the past, when distributors distributed games through retail stores, they are now selling digital content, which is based on online distribution channels. This study analyzes the effects of eWOM (electronic Word of Mouth) on sales volume of game sold on Steam, an online digital content distribution channel. Recently, data mining techniques based on Big Data have been studied. In this study, emotion index of eWOM is derived by emotional analysis which is a text mining technique that can analyze the emotion of each review among factors of eWOM. Emotional analysis utilizes Naive Bayes and SVM classifier and calculates the emotion index through the SVM classifier with high accuracy. Regression analysis is performed on the dependent variable, sales variation, using the emotion index, the number of reviews of each game, the size of eWOM, and the user score of each game, which is a rating of eWOM. Regression analysis revealed that the size of the independent variable eWOM and the emotion index of the eWOM were influential on the dependent variable, sales variation. This study suggests the factors of eWOM that affect the sales volume when Korean game companies enter overseas markets based on steam.

Embedded Software Reliability Modeling with COTS Hardware Components (COTS 하드웨어 컴포넌트 기반 임베디드 소프트웨어 신뢰성 모델링)

  • Gu, Tae-Wan;Baik, Jong-Moon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.607-615
    • /
    • 2009
  • There has recently been a trend that IT industry is united with traditional industries such as military, aviation, automobile, and medical industry. Therefore, embedded software which controls hardware of the system should guarantee the high reliability, availability, and maintainability. To guarantee these properties, there are many attempts to develop the embedded software based on COTS (Commercial Off The Shelf) hardware components. However, it can cause additional faults due to software/hardware interactions beside general software faults in this methodology. We called the faults, Linkage Fault. These faults have high severity that makes overall system shutdown although their occurrence frequency is extremely low. In this paper, we propose a new software reliability model which considers those linkage faults in embedded software development with COTS hardware components. We use the Bayesian Analysis and Markov Chain Monte-Cairo method to validate the model. In addition, we analyze real linkage fault data to support the results of the theoretical model.

A Prediction Model for the Development of Cataract Using Random Forests (Random Forests 기법을 이용한 백내장 예측모형 - 일개 대학병원 건강검진 수검자료에서 -)

  • Han, Eun-Jeong;Song, Ki-Jun;Kim, Dong-Geon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.771-780
    • /
    • 2009
  • Cataract is the main cause of blindness and visual impairment, especially, age-related cataract accounts for about half of the 32 million cases of blindness worldwide. As the life expectancy and the expansion of the elderly population are increasing, the cases of cataract increase as well, which causes a serious economic and social problem throughout the country. However, the incidence of cataract can be reduced dramatically through early diagnosis and prevention. In this study, we developed a prediction model of cataracts for early diagnosis using hospital data of 3,237 subjects who received the screening test first and then later visited medical center for cataract check-ups cataract between 1994 and 2005. To develop the prediction model, we used random forests and compared the predictive performance of this model with other common discriminant models such as logistic regression, discriminant model, decision tree, naive Bayes, and two popular ensemble model, bagging and arcing. The accuracy of random forests was 67.16%, sensitivity was 72.28%, and main factors included in this model were age, diabetes, WBC, platelet, triglyceride, BMI and so on. The results showed that it could predict about 70% of cataract existence by screening test without any information from direct eye examination by ophthalmologist. We expect that our model may contribute to diagnose cataract and help preventing cataract in early stages.

Analysis of Elderly Drivers' Accident Models Considering Operations and Physical Characteristics (고령운전자 운전 및 신체특성을 반영한 교통사고 분석 연구)

  • Lim, Sam Jin;Park, Jun Tae;Kim, Young Il;Kim, Tae Ho
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.37-46
    • /
    • 2012
  • The number of traffic accidents caused by elderly drivers over the age of 65 has surged over the past ten years from 37,000 to 274,000 cases. The proportion of elderly drivers' accidents has jumped 3.1 times from 1.2% to 3.7% out of all traffic accidents, and traffic safety organizations are pursuing diverse measures to address the situation. Above all, connecting safety measures with an in-depth research on behavioral and physical characteristics of elderly drivers will prove vital. This study conducted an empirical research linking the driving characteristics and traffic accidents by elderly drivers based on the Driving Aptitude Test items and traffic accident data, which enabled the measurement of behavioral characteristics of elderly drivers. In developing the Influence Model, we applied the zero-inflated Poisson (ZIP) regression model and selected an accident prediction model based on the Bayesian Influence in regards to the ZIP regression model and the zero-inflated negative binomial (ZINB) regression model. According to the results of the AAE analysis, the ZIP regression model was more appropriate and it was found that three variables? prediction of velocity, diversion, and cognitive ability? had a relation of influence with traffic accidents caused by elderly drivers.

Prediction Model for Hypertriglyceridemia Based on Naive Bayes Using Facial Characteristics (안면 정보를 이용한 나이브 베이즈 기반 고중성지방혈증 예측 모델)

  • Lee, Juwon;Lee, Bum Ju
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.433-440
    • /
    • 2019
  • Recently, machine learning and data mining have been used for many disease prediction and diagnosis. Chronic diseases account for about 80% of the total mortality rate and are increasing gradually. In previous studies, the predictive model for chronic diseases use data such as blood glucose, blood pressure, and insulin levels. In this paper, world's first research, verifies the relationship between dyslipidemia and facial characteristics, and develops the predictive model using machine learning based facial characteristics. Clinical data were obtained from 5390 adult Korean men, and using hypertriglyceridemia and facial characteristics data. Hypertriglyceridemia is a measure of dyslipidemia. The result of this study, find the facial characteristics that highly correlated with hypertriglyceridemia. FD_43_143_aD (p<0.0001, Area Under the receiver operating characteristics Curve(AUC)=0.652) is the best indicator of this study. FD_43_143_aD means distance between mandibular. The model based on this result obtained AUC value of 0.662. These results will provide a basis for predicting various diseases with only facial characteristics in the screening stage of disease epidemiology and public health in the future.