• 제목/요약/키워드: 베이시안 추정법

검색결과 4건 처리시간 0.016초

합리적 교량유지관리 의사결정을 위한 구조성능의 추계학적 예측 (Probabilistic Prediction of Structural Performance for Rational Bridge Management Policy)

  • 오병환;김동욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권4호
    • /
    • pp.185-193
    • /
    • 2004
  • 현재의 교량의 유지관리 시에 적절한 보수 시기나 최적화된 유지관리 정책을 결정하기 위하여 교량의 성능저하를 정확히 예측하는 것은 가장 중요한 일이다 이률 위해 제안된 방법은 정량적 평가, 마르코프체인, 베이시안 추정법 등으로 구성되었다. 제안된 방법에 따라 국내의 콘크리트 슬래브 교량을 예로서 예측을 하여는데, 기존의 전문가 의견조사 빛 외관조사에 의한 예측보다 좀 더 합리적인 결과를 보여주었다.

CSRP 시험데이터를 사용한 베이시안 추정모델 기반 K-1 방독면 저장수명 분석 (Bayesian Estimation based K-1 Gas-Mask Shelf Life Assessment using CSRP Test Data)

  • 김종환;정치정;김현정
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.124-132
    • /
    • 2018
  • This paper presents a shelf life assessment for K-1 military gas masks in the Republic of Korea using test data of Chemical Materiels Stockpile Reliability Program(CSRP). For the shelf life assessment, over 2,500 samples between 2006 and 2015 were collected from field tests and analyzed to estimate a probability of proper and improper functionality using Bayesian estimation. For this, three stages were considered; a pre-processing, a processing and an assessment. In the pre-processing, major components which directly influence the shelf life of the mask were statistically analyzed and selected by applying principal component analysis from all test components. In the processing, with the major components chosen in the previous stage, both proper and improper probability of gas masks were computed by applying Bayesian estimation. In the assessment, the probability model of the mask shelf life was analyzed with respect to storage periods between 0 and 29 years resulting in between 66.1 % and 100 % performances in accuracy, sensitivity, positive predictive value, and negative predictive value.

웨이블릿 영역에서 혼합 모델을 사용한 영상 잡음 제거 (Mixture Distributions for Image Denoising in Wavelet Domain)

  • 배병석;장문기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.89-90
    • /
    • 2008
  • AWGN(Addictive white gaussian noise)에 의해 영상은 자주 훼손되곤 한다. 최근 이를 복원하기위해 웨이블릿(Wavelet) 영역에서의 베이시안(Bayesian) 추정법이 연구되고 있다. 웨이블릿 변환된 영상 신호의 밀도 함수(pdf)는 표족한 첨두와 긴 꼬리(long-tail)를 갖는 경망이 있다. 이러한 사전 밀도 함수(a priori probability density function)를 상황에 적합하게 추정한다면 좋은 성능의 복원 결과를 얻을 수 있다. 빈번이 제안되는 릴도 함수로 가우시안(Gaussian) 분포 참수와 라플라스(Laplace) 분포 함수가 있다. 이들 각각의 모델은 훌륭히 변환 계수들을 모델링하며 나름대로의 장점을 나타낸다. 본 연구에서는 가우시안 분포와 라플라스(Laplace) 분포의 혼합 분포 모델을 밀도 함수로 제안하여, 이 들의 장점을 종합하였다. 이를 MAP(Maximum a Posteriori) 추정 방법에 적용하여 잡음을 제거 하였다. 그 결과 기존의 알고리즘에 비해 시각적인 면(Visual aspect), 수치적인 면(PSNR), 그리고 연산량(Complexity) 측면에서 망상된 결과를 얻었다.

  • PDF

지화학자료를 이용한 금${\cdot}$은 광산의 배태 예상지역 추정-베이시안 지구통계학과 의사나무 결정기법의 활용 (Prediction of the Gold-silver Deposits from Geochemical Maps - Applications to the Bayesian Geostatistics and Decision Tree Techniques)

  • 황상기;이평구
    • 자원환경지질
    • /
    • 제38권6호
    • /
    • pp.663-673
    • /
    • 2005
  • 지화학 자료의 공간적 분포와 금은광산의 공간적 분포사이의 상관관계를 조사하였다. 활용된 자료는 한국자원연구소에서 발간된 지화학도 중 21개 원소에 대한 도면과, 현재까지 파악된 광산의 위치도면 및 1:100만 지질도이다. 지화학도는 250m 등간격의 격자형 화소로 제작된 도면 중 통계분석을 위하여 1km 간격의 자료를 추출하여 분석하였으며, 광산위치의 지화학 자료 역시 250m 간격의 화소에서 추출하여 분석을 수행하였다. 광산과 지화학자료의 공간적인 상관분석은 베이시안 중첩법과 의사결정나무 기법을 활용하였디. 베이시안 통계기법은 각 지화학도에 분포하는 원소의 화소값을 올림차순으로 정열한 후 자료의 개수가 자기 5, 25, 50, 75, 95, $100\%$에 해당하는 등급을 나누어 모든 지화학도를 6개의 등급을 갖는 도면으로 재분류 하였다. 자 등급에 속한 광산의 개수를 대상으로 광산이 발생할 확률이 계산되었으며, 이 확률을 취합하여 최종 사후확률이 계산되었으며, 사후확률로 광산이 배태될 예측 도면이 작성되었다. 금/은, 동, 철, 납/아연, 텅스텐광산 및 광산이 존재하지 않는 위치에 해당하는 지화학 자료와 암상을 기준으로 의사결정나무를 학습시키고, 학습된 결과를 전체 자료에 적용하여 예측도면을 작성하였다. 광산이 존재하지 않은 지역을 추출하기 위하여 지화학도의 화소를 1km간격으로 추출한 후 이들 중 광산과 750m이내에 있는 자료는 제외시키는 알고리듬을 활용하였다. 예측결과 베이시안 방법에 의한 광산의 위치 예측이 의사결정나무에 의한 예측보다 상대적으로 정확함이 확인되었다. 그러나 두 방법 모두 공히 기존의 광산위치를 적절히 예측하고 있어서 지화학 자료는 광산의 위치와 밀접한 관계를 갖고 있음이 확인되었다.