• Title/Summary/Keyword: 베딩조건

Search Result 4, Processing Time 0.018 seconds

Numerical Model Study on a Scheme to Restrain Deformation of a Conduit with Flexible Joints(II) : Effectiveness of Concrete Bedding Reinforcement (연성이음관의 변형억제방안에 관한 수치모델연구(II): 콘크리트베딩 보강효과)

  • 손준익;정하익
    • Geotechnical Engineering
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 1991
  • This paper reports the application study of the concrete bedding reinforcement under a buried conduit with flexible joints subjected to differential settlement via a finite elemen modeling. The reinforcement of concrete bedding helps to minimize the differential settlement between the adjoining conduit segments. Three different field conditions have been considered. The settlement pattern and deformation slope have been evaluated for each boundary condition. The analysis results are compared for both non-reinforced and reinforced cases to measure the effectiveness of concrete bedding reinforcement for restraining deformation of a conduit with flexible joints.

  • PDF

Design Approach for Bedding Reinforcement of a Buried Pipeline Based on Numerical Modeling (수치해석기법에 의한 매설관의 베딩보강 설계방안)

  • Sohn, Joon Ik;Jeong, Ha Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.167-175
    • /
    • 1992
  • This paper reports the application study of the bedding reinforcement under a buried pipeline subjected to differential settlement. Three different field conditions have been considered and evaluated via a finite element modeling. The deformation of a buried pepeline has been evaluated for each boundary condition together with the settlement restraining effects of the bedding reinforcement. A guideline of the bedding reinforcement design has been proposed so as to put it to practical use for general field applications. The design guideline incorporates the procedure and method for the selection of typical sections suggested by conventional empirical approach and for the determination of bedding thickness based on the numberical analysis results performed in this research.

  • PDF

Effect of Bedding Conditions on Earth Pressure Distribution of Embedded Pipes (EPS베딩재가 지중매설관의 토압에 미치는 영향)

  • Yoo, Nam-Jae;Lee, Hee-Kwang;Park, Byung-Soo;Jeong, Gil-Soo;Sim, Do-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, large scale experimental model tests were performed to investigate the distribution of earth pressure acting on embedded rigid pipes having different bedding conditions. For these tests, very light weighted EPS blocks were installed at top and bottom of the rigid pipe and Jumunjin Standard Sand was used as a ground material. As results of model tests, for the case of no bedding on the pipe, the measured pressure at the bottom of the pipe was $4.96_{tf/m^2}$ whereas they were in the range of $1.87{\sim}4.96_{tf/m^2}$ in the case of EPS beddings being installed at the top and the bottom of the pipe. Therefore, for the case of EPS bedding being installed, the ratio of reduced pressures acting on the pipe, compared with the case of no EPS beddings, were in the rage of 16~62%. As a result of parametric test with changing the locations of EPS bedding, the trend of reducing the stress acting on the pipe was in the order of bottom bedding, top bedding, and top and bottom bedding. Effect of bedding positions on the reduced magnitude of acting pressure on the pipe was more significant in the case of top bedding than in the case of the bottom bedding.

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.