• Title/Summary/Keyword: 법선벡터 지도

Search Result 47, Processing Time 0.02 seconds

Accelerated Volume Rendering based on 3D Texture Mapping Hardware using Normal Blending (3D 텍스쳐 매핑 하드웨어 하에서 법선 벡터 블렌딩을 이용한 가속화된 볼륨 렌더링)

  • Yun, Seong-Ui;Sin, Yeong-Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.4
    • /
    • pp.181-187
    • /
    • 2001
  • 본 논문에서는 3D 텍스쳐 매핑 하드웨어(texture mapping hardware)하에서 OpenGL를 이용하여 빠른 추출(classification) 및 음영처리(shading)를 가능하게 하는 직접 볼륨 렌더링(direct volume rendering) 방법을 제안한다. 추출과정을 위해 lookup table을 통해서 볼륨 데이터의 밀도값(density)으로부터 불투명도(opacity)값을 얻어내고, 법선 벡터 블렌딩(normal blending)방법을 제안하여 볼륨 크기에 상관없이 최종 이미지에서만 음영 처리 연산을 수행한다. 본 논문에서 제시된 볼륨 렌더링의 전과정이 그래픽스 하드웨어(graphics hardware)에서 이뤄지면, 음영처리 연산의 복잡도 감소로 인하여 상호 대화적인 볼륨 렌더링이 가능하다.

  • PDF

A Study on Focus Position Control of Reflector Using Fuzzy Controller (퍼지제어기를 이용한 반사경의 초점 위치제어에 관한 연구)

  • Jeong, Hoi-Seong;Kim, Jun-Su;Kim, Hye-Ran;Kim, Gwan-Hyung;Lee, Hyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.645-652
    • /
    • 2011
  • The present study investigated the tracking system of a reflector to trace the movement of sun. The system was designed to minimize the error between the vertical vector of reflector and the position of sun. The proposed system was able to collect the sun lights at a point as a useful source of light energy and transmit the collected light to a remote area through optical fibers. Also the study successfully solved the controller design problem due to the complexity of modeling of the sun tracking system using a fuzzy logic controller which mimics human reasoning.

Design of the 3D Object Recognition System with Hierarchical Feature Learning (계층적 특징 학습을 이용한 3차원 물체 인식 시스템의 설계)

  • Kim, Joohee;Kim, Dongha;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 2016
  • In this paper, we propose an object recognition system that can effectively find out its category, its instance name, and several attributes from the color and depth images of an object with hierarchical feature learning. In the preprocessing stage, our system transforms the depth images of the object into the surface normal vectors, which can represent the shape information of the object more precisely. In the feature learning stage, it extracts a set of patch features and image features from a pair of the color image and the surface normal vector through two-layered learning. And then the system trains a set of independent classification models with a set of labeled feature vectors and the SVM learning algorithm. Through experiments with UW RGB-D Object Dataset, we verify the performance of the proposed object recognition system.

Real-Time Image-Based Relighting for Tangible Video Teleconference (실감화상통신을 위한 실시간 재조명 기술)

  • Ryu, Sae-Woon;Parka, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.807-810
    • /
    • 2009
  • This paper deals with a real-time image based relighting system for tangible video teleconference. The proposed image based relighting system renders the extracted human object using the virtual environmental images. The proposed system can homogenize virtually the lighting environments of remote users on the video teleconference, or render the humans like they are in the virtual places. To realize the video teleconference, the paper obtains the 3D object models of users in real-time using the controlled lighting system. In this paper, we use single color camera and synchronized two directional flash lights. Proposed system generates pure shading images using on and off flash images subtraction. One pure shading reflectance map generates a directional normal map from multiplication of each reflectance map and basic normal vector map. Each directional basic normal map is generated by inner vector calculation of incident light vector and camera viewing vector. And the basic normal vector means a basis component of real surface normal vector. The proposed system enables the users to immerse video teleconference just as they are in the virtual environments.

Shading Algorithm Evaluation based on User Perception (사용자 인지 실험 기반 쉐이딩 알고리즘 평가)

  • Byun, Hae-Won;Park, Yun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.106-115
    • /
    • 2011
  • In this paper, we evaluate the effectiveness of previous shading algorithms in depicting shape of 3d objects. We perform a study in which people are shown an image of one of ten 3D objects shaded with one of eight styles and asked to orient a gauge to coincide with the surface normal at many positions on the object's surface. The normal estimates are compared with each other and with ground truth data provided by a registered 3D surface model to analyze accuracy and precision. Our experiments suggest that people interpret certain shape differently depending on shading of 3d object. This paper offers substantial evidence that current computer graphics shading algorithms can effectively depict shape of 3d objects where the algorithms have the properties of lots of tone steps and uniformly distributed tone steps. This type of analysis can guide the future development of new CG shading algorithms in computer graphics for the purpose of shape perception.

Robust 3D Facial Landmark Detection Using Angular Partitioned Spin Images (각 분할 스핀 영상을 사용한 3차원 얼굴 특징점 검출 방법)

  • Kim, Dong-Hyun;Choi, Kang-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.199-207
    • /
    • 2013
  • Spin images representing efficiently surface features of 3D mesh models have been used to detect facial landmark points. However, at a certain point, different normal direction can lead to quite different spin images. Moreover, since 3D points are projected to the 2D (${\alpha}-{\beta}$) space during spin image generation, surface features cannot be described clearly. In this paper, we present a method to detect 3D facial landmark using improved spin images by partitioning the search area with respect to angle. By generating sub-spin images for angular partitioned 3D spaces, more unique features describing corresponding surfaces can be obtained, and improve the performance of landmark detection. In order to generate spin images robust to inaccurate surface normal direction, we utilize on averaging surface normal with its neighboring normal vectors. The experimental results show that the proposed method increases the accuracy in landmark detection by about 34% over a conventional method.

3D Pointing for Effective Hand Mouse in Depth Image (깊이영상에서 효율적인 핸드 마우스를 위한 3D 포인팅)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.35-44
    • /
    • 2014
  • This paper proposes a 3D pointing interface that is designed for the efficient application of a hand mouse. The proposed method uses depth images to secure high-quality results even in response to changes in lighting and environmental conditions and uses the normal vector of the palm of the hand to perform 3D pointing. First, the hand region is detected and tracked using the existing conventional method; based on the information thus obtained, the region of the palm is predicted and the region of interest is obtained. Once the region of interest has been identified, this region is approximated by the plane equation and the normal vector is extracted. Next, to ensure stable control, interpolation is performed using the extracted normal vector and the intersection point is detected. For stability and efficiency, the dynamic weight using the sigmoid function is applied to the above detected intersection point, and finally, this is converted into the 2D coordinate system. This paper explains the methods of detecting the region of interest and the direction vector and proposes a method of interpolating and applying the dynamic weight in order to stabilize control. Lastly, qualitative and quantitative analyses are performed on the proposed 3D pointing method to verify its ability to deliver stable control.

Efficient Computation for Connected Components of an Isophote in a Surface of Revolution (회전체의 Isophote 구성요소의 효율적인 계산)

  • Kim, Ku-Jin;Lee, In-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.8
    • /
    • pp.440-444
    • /
    • 2002
  • This paper presents an efficient and robust algorithm to compute the isophote of a surface of revolution. A surface of revolution can be decomposed to a set of cross-sectional circles. The surface normals along each cross-sectional circle form a cone. Using the characteristics of the normal vectors and the symmetric property of the surface of revolution, we propose a method to find the connected components of an isophote, which requires intersecting a planar curve(and its reflection) with two rays. Moreover, we propose a closed-form representation of an isophote as a parametric curve.

Estimation of time to contact and surface orientation of a leading vehicle using image deformation (영상변형을 이용한 선행차량과의 충돌시간 및 법선벡터의 예측)

  • Lee, Jun-Woong;Park, Seong-Kee;No, Kyoung-Sig;Kweon, In-So
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-341
    • /
    • 1998
  • This paper proposes an algorithm to obtain the time-to-contact between an observer and a target and surface orientation of the target. These two physical elements are computed from the image deformation of a known shape, which is extracted by supervised classification of detected line segments based on MAP and Mahalanobis distance. The proposed algorithm was applied to the natural outdoor traffic scene and would contribute to the development for a collision avoidance system.

  • PDF

Development of Physics Simulation for Augmented Reality Billiards Content (증강현실 당구 콘텐츠를 위한 물리 시뮬레이션 개발)

  • Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.150-159
    • /
    • 2022
  • In this paper, we propose a physics simulation for augmented reality (AR) billiards content. The characteristics of the physics simulation for the proposed AR billiards content are as follows. First, physical equations are derived by calculating the force and moment of inertia applied to the billiards ball to realize the motion of the billiards ball similar to the real one in the AR environment. Then, we determine the velocity and angular velocity of the virtual billiards ball associated with the rotation of the virtual billiards ball with respect to the impact point. Second, using some vectors such as incidnet vector, normal vector, reflection vector, the trajectory of the virtual billiards ball would be implement. these equations are applied to AR environment so that AR billiards content could be implement. This physics simulation allows users to feel like the real world using a virtual pool table and induce them to interact with the real environment. As a result of the experiment, the accuracy range between the path of the real billiards ball and the path of the virtual billiards ball was calculated to be 97.75% to 99.11%. Therefore, it was determined that the performance of the physics simulation for the AR billiards content proposed in this paper performs similarly to the path of the real billiards ball.