• Title/Summary/Keyword: 범용플랜지

Search Result 9, Processing Time 0.03 seconds

Design of the Radial Extrusion Process for the General-Purpose Flange Using Model Material (모델재료를 이용한 범용 플랜지의 레이디얼 압출 공정설계)

  • Lee, Sang-Don;Byon, Sung-Kwang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • This study is to compare and analyze the material flow, deformation characteristics, and forming load of flange by means of similitude experimental method of model material using plasticine. In order to find optimal forming conditions, prototype experiments were designed to investigate forming characteristics of general-purpose flange under various working conditions. As a result of prototype experiments, billet thickness and gap-height ratio was found to be the most influential experimental parameter in flange forming. Forming loads from prototype experiments were compared to the results of finite element analysis after conducting estimation of forming loads of real material. Results of prototype experiments based on model material techniques are expected to be used as a basic data of die design f3r the development of products and process.

A Study on the Method of Local Stress Evaluation for the Wind Turbine Tower Flange (풍력발전시스템 타워의 플랜지 국부 응력 평가 기법 연구)

  • Won, Jong-Bum;Lee, Kang-Su;Park, Jong-Vin;Kim, Mann-Eung;Han, Sung-Kon;Lee, Sang-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.200-206
    • /
    • 2010
  • 본 논문은 풍력발전 시스템의 하부 지지 구조물인 타워의 플랜지 연결부 설계 평가를 위한 플랜지 모델건전성 평가 기법에 대해 다룬다. 일반적으로 풍력발전 시스템 타워의 연결부는 Ring-형 플랜지의 형태를 가지고 있다. 이러한 ring-형 플랜지에 대한 설계 기준 및 방법은 풍력 발전 시스템 기술기준 등 에 명시되어있다. 이러한 설계 기준을 따르는 플랜지 연결부에 대해 구조 및 체결 볼트의 건전성 평가를 위해 하중평가 전용 프로그램인 GH-Bladed 3.8를 통해 생성된 하중 데이터를 유한요소 범용 프로그램인 Ansys 12.0에 접목하여 구조해석을 수행 하였다. 해석 방법은 풍력발전시스템의 타워를 셸 요소로 모델링하여 계산한 해석 결과를 플랜지 모델의 경계면에 적용 시켜 해석하는 submodeling 기법과 타워를 빔의 형태로 단순화 화여 계산한 거동 결과를 플랜지 모델에 적용하는 기법을 사용 하였다. 이 두 가지의 해석 기법으로 도출된 결과의 비교를 통하여 해석 결과 신뢰성을 평가하고 효율적이고 합리적인 방법을 제시하고자 하였다.

  • PDF

A Numerical Study on Flexural Strength with the Spreading of Upper Reinforcement of Girder into the Adjoining Slab (보 상부철근의 슬래브 내 분산배근에 따른 휨강도의 수치해석적 연구)

  • Park, Jung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1179-1185
    • /
    • 2007
  • The study of girder-to-column joints under experiment and numerical analysis was carried out to evaluate change of the flexural capacity of the joints with the 2-layer upper reinforcement of girder within rectangular section and the single-layered upper reinforcement at the girder flange. According to the analysis results using the flange width, the flange thickness and the location of reinforcements in the upper flange as variables, in the models with a same effective width, the increasing rate of capacity has nothing to do with the flange width with a same effective width. However, the capacity of the models with the upper reinforcements arranged close to the rectangular beam section is larger than that of the models with the upper reinforcements arranged remotely from the rectangular section. If the range of arrangement fur reinforcement exceeds the effective width, despite of increasing the flange thickness, the capacity is not increased.

  • PDF

An Alternative Simplified Approach in Solving for the Inelastic Buckling Strengths of Singly Symmetric Non-Compact Stepped I-Beams (일축대칭 비조밀 스텝 I형보의 비탄성 좌굴강도 산정을 위한 단순방법)

  • Alolod, Shane;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.123-134
    • /
    • 2019
  • This paper proposed a new design equation for the inelastic lateral torsional buckling (LTB) of singly symmetric stepped I-beams with non-compact flange sections. The proposed equation was generated using a finite element program, ABAQUS, and a statistical program, MINITAB. The parameters used were the stepped beams parameters; ${\alpha}$, ${\beta}$, and ${\gamma}$ and the length-to-height ratio ($L_b/h$) of the beam. The proposed equation was further validated by means of experimental test, where beams were subjected to four-point bending and supported by roller and lateral braces near the end supports. In addition, finite element models were simulated using the same parameters used in the experimental test to verify the results of the test conducted. It was proved that LTB capacity calculated from the proposed equation is accurate and conservative in comparison with the yielded values from the FEM and actual test, making it a reliable and safe approach in calculating the buckling capacities of singly symmetric stepped beams with non-compact flange sections.

A Study on Capacity Evaluation for Singly Symmetric Stepped Beam with Pure Bending (순수 휨하중 받는 일축대칭 스텝보의 성능평가기법에 관한 연구)

  • Oh, Jeong-Jae;Kim, Yong-Hee;Park, Jong-Sub;Oh, Byung-Sam
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.105-108
    • /
    • 2008
  • 본 연구에서는 기존에 수행된 균일단면을 가지는 I형 보의 좌굴 강도에 대한 해석적?이론적 연구를 토대로 일축대칭을 이루는 변단면 I형보의 좌굴강도를 산정하고자 범용구조해석프로그램 ABAQUS (2007)를 이용하여 유한요소해석을 실시하였다. 유한요소해석에는 4절점 쉘요소인 S4R이 사용되었고, 플랜지 길이방향 비, 너비방향 비, 두께의 비로 일축대칭 스텝보를 사용하였으며, 균일모멘트를 작용시켰다. 개발된 좌굴강도 제안식은 해석결과와 비교하여 -11%~2%의 오차범위를 나타내었다. 본 연구결과는 다양한 형식의 일축대칭 I형보가 사용되는 빌딩 및 교량 구조물의 경제적이고 합리적인 설계에 활용 될 수 있을 것이다.

  • PDF

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Tension test considering the shape change of CFT Column-to-Beam Interior Diaphragm (CFT 기둥-보 내다이아프램의 형상변화를 고려한 인장실험)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.67-75
    • /
    • 2019
  • The diaphragm used for CFT columns has a small amount of steel to be used, but has a disadvantage that welding is difficult and openings are required because the steel tube and four sides must be welded. The improved diaphragm to be examined in this study was cut into four corners by cutting the center hole for concrete filling. In the improved diaphragm, the width of the center hole is the same as that of the previous diaphragm, but the width of the diaphragm contacting the steel tube is reduced, thereby reducing the welding length by about 70% compared to the previous diaphragm. The in-plane strain of each specimen was analyzed when the same load was applied to the interior diaphragm through a simple tensile test. Using the general FEM program(ANSYS 19.2), the analysis was performed under the same conditions as the actual simple tensile test, and the load transfer between the improved diaphragm and the previous diaphragm was compared. When the width of the diaphragm is equal to or smaller than the flange width, stress is concentrated from the end of the diaphragm, and when the flange width is larger, stress is concentrated at the center.

A Study on the Behavior of Steel Curved Girder Bridge during Construction (곡선 강박스 거더교의 가설중 거동 파악 연구)

  • Gil, Heung Bae;Pae, Chang Kyu;Kang, Sang Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.511-518
    • /
    • 2005
  • The behavior of steel curved bridges is more complicated than straight bridges, thus the analysis, design and construction process of curved bridges require much more attention. In design of curved bridges, the grillage analysis using general structural analysis program or special program is mainly used. Comparative study in coherence between these analytical results and actual behavior of curved bridges has been rarely conducted. To study the behaviour of curved bridges and verify the current design method, field measurements and analyses using general structural analysis program and 3-D refined analysis program were carried out for simple and continuous bridges in this study. The study focused on the behavior of curved steel bridges during construction. Measured and analytical results had quantitative difference mutually, but there were qualitatively similar. Stress variations in transverse direction of flange were observed and grillage analysis models yielded more conservative values than 3-D refined analysis models.

Inelastic Analysis of Steel-Concrete Composite Column with Non-Compact Steel Section (비조밀단면을 가진 SC 합성 기둥의 비선형 해석)

  • Oh, Myoung Ho;Jang, Tae Young;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.63-71
    • /
    • 2005
  • There were already several studies conducted on the steel-concrete (SC) composite column, which was developedcomplement the weaknesses and maintain the advantages of previous composite columns. The axial compressive capacity of the SC composite column was estimated by the tests in previous studies, but the experiments for the large-scale column could not be performed because of the limitation with the laboratory's capacity. In this study, the analytical study was performed using the general finite element analysis program to reflect the interaction of concrete and steel and the local buckling of steel flange composed of the non-compact section. The appropriateness of the analytical model was verified by the comparison between experimental and analytical results. The nonlinear behavior of full-scale SC composite column was analyzed using the verified analytical model. From these analytical studies, it was concluded that the width-to-thickness ratio of the steel cross-section of the SC composite column should not exceed 25:0. The section area of the link is best when it is over 0.025 dt, and the link distance is to be less than D/2 or 300mm.