• 제목/요약/키워드: 번호판

Search Result 434, Processing Time 0.025 seconds

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

A Detection of New Vehicle License Plates Using Difference of Gaussian and Iterative Labeling (가우시안 차이와 반복 레이블링을 이용한 신형 차량번호판 검출)

  • Yeo, Jae-yun;Kim, Min-ha;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.78-81
    • /
    • 2012
  • In this paper, we proposed the new vehicle license plates detection method which is available in a various fields, including vehicle access control, illegal parking and speeding vehicle crack down. First, we binarize an image by using difference of gaussian filter to find a sequence of numbers of plates. Second, we determine the plate region by labeling repeatedly using the morphological characteristics of the plates. Finally, we use a projective transformation for correcting the distortion that occurs because of the camera or the location of the vehicle.

  • PDF

License Plate Location Using SVM (SVM을 이용한 차량 번호판 위치 추출)

  • Hong, Seok-Keun;Chun, Joo-Kwong;An, Myoung-Seok;Shim, Jun-Hwan;Cho, Seok-Je
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.845-850
    • /
    • 2008
  • In this paper, we propose a license plate locating algorithm by using SVM. Tipically, the features regarding license plate format include height-to-width ratio, color, and spatial frequency. The method is dived into three steps which are image acquisition, detecting license plate candidate regions, verifying the license plate accurately. In the course of detecting license plate candidate regions, color filtering and edge detecting are performed to detect candidate regions, and then verify candidate region using Support Vector Machines(SVM) with DCT coefficients of candidates. It is possible to perform reliable license plate location bemuse we can protect false detection through these verification process. We validate our approach with experimental results.

Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation (딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.

Real-time Recognition of Car Licence Plate on a Moving Car (이동 차량에서의 실시간 자동차 번호판 인식)

  • 박창석;김병만;서병훈;김준우;이광호
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.32-43
    • /
    • 2004
  • In this paper, a system which can effectively recognize the plate image extracted from camera set on a moving car is proposed. To extract car licence plate from moving vehicles, multiple candidates are maintained based on the strong vertical edges which are found in the region of car licence plate. A candidate region is selected among them based on the ratio of background and characters. We also make a comparative study of recognition performance between support vector machines and modular neural networks. The experimental results lead us to the conclusion that the former is superior to the latter. For a better recognition rate, a simple method combining the support vector machine with modular neural network where the output of the latter is used as the input of the former is suggested and evaluated. As we expected, the hybrid one shows the best result among those three methods we have mentioned.

  • PDF

Recognition of Car Plate using SOM Algorithm and Development of Parking Control System (SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발)

  • 김광백
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1052-1061
    • /
    • 2003
  • In this paper, we propose the car plate recognition using SOM algorithm and describe the parking control system using the proposed car plate recognition. The recognition of car plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate area from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. The extracted characteristic area was recognized by using the SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the car plate recognition using SOM algorithm was very efficient. We develop the parking control system using the proposed car plate recognition that shows performance improvement by the experimental results.

Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System (가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안)

  • Lee, Seungju;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.776-788
    • /
    • 2020
  • In this paper, a vehicle type recognition system using deep learning and a license plate recognition system are proposed. In the existing system, the number plate area extraction through image processing and the character recognition method using DNN were used. These systems have the problem of declining recognition rates as the environment changes. Therefore, the proposed system used the one-stage object detection method YOLO v3, focusing on real-time detection and decreasing accuracy due to environmental changes, enabling real-time vehicle type and license plate character recognition with one RGB camera. Training data consists of actual data for vehicle type recognition and license plate area detection, and synthetic data for license plate character recognition. The accuracy of each module was 96.39% for detection of car model, 99.94% for detection of license plates, and 79.06% for recognition of license plates. In addition, accuracy was measured using YOLO v3 tiny, a lightweight network of YOLO v3.

Vehicle Number Plate Detection using Corner Information (꼭짓점 정보를 이용한 자동차 번호판 검출)

  • Kim, Jin-Uk;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.4
    • /
    • pp.173-179
    • /
    • 2012
  • In this paper, we presents a new method for vehicle number plate detection. Our method is basically the method extracting a rectangles from a car image because the shape of a vehicle number plate is a rectangle. For detecting the vehicle number plate, firstly, the contrast of the input image is enhanced. Then, the lines in the image are obtained by using LSD(line segment detector), and rectangles in the image are detected from the line data. These rectangles are the candidates of the car plate, from which the car plate is selected. In this procedure, the method of detecting rectangles is our proposed method, which consists of three stages: (1) extracting corners from the line segments by LSD; (2) extracting diagonal lines from the corner data; and (3) detecting rectangles from diagonal line information. And finally the vehicle number plate is selected from these rectangles by using the feature of the vehicle number plate and the inside information of rectangles. In the experiments with the 100 images captured by our digital camera, we have achieved a detection rate of 94%.

Vehicle Plate Extraction Algorithm for an Exculsive Bus Lane (버스 전용차선에서의 차량 번호판 추출 알고리즘)

  • 설성욱;이상찬;주재흠;강현인;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.31-37
    • /
    • 2001
  • License plate recognition system for an exclusive bus-lane is made of 5 core parts which are vehicle detection, image acquisition individual character extraction, character recognition and data transmission. Among them, the accuracy of license plate extraction can bring effect significantly to the accuracy of a whole system recognition rate also the more exact extraction of license plate is required in various weather and environment conditions. Therefore in this paper we propose a plat extraction algorithm that makes pyramid structure to reduced the extraction processing time binarizes plate's template region using adaptive thresholding extracts candidate region containing plate, and verifies a final region using plate character distribution characteristics among the candidates. Experimenal results were exactly extracted the license plate region by using proposed method to the image obtained in an exclusive bus-lane with various weather and environment conditions.

  • PDF

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.