• 제목/요약/키워드: 번호판추출

검색결과 203건 처리시간 0.021초

토픽모델링을 활용한 교통경찰 민원 분석 (An Analysis of Civil Complaints about Traffic Policing Using the LDA Model)

  • 이상엽
    • 한국ITS학회 논문지
    • /
    • 제20권4호
    • /
    • pp.57-70
    • /
    • 2021
  • 본 연구는 민원데이터를 분석함으로써 교통경찰에 대한 국민의 치안 수요를 탐색하고자 하였다. 이를 위해 교통경찰 관련 국민신문고 민원데이터 2,062건을 대상으로, 토픽모델링 방법 중 하나인 잠재 디리클레 할당(Latent Dirichlet Allocation)을 통해 주요 토픽을 추출하고 높은 비중을 차지한 위반신고에 대해 추가분석을 시도하였다. 이 과정에서 키워드와 대표문서의 일관성과 합치성을 함께 고려하였다. 분석 결과 교통경찰 관련 민원은 시설개선, 신호에 따른 교차로통행방법, 번호판 영치, 개인형 이동장치 등 41개의 토픽으로 분류할 수 있었다. 교차로내 위반과 이륜자동차의 위반에 대한 단속을 강화하고 무인교통단속장비, 횡단보도, 신호등의 설치 및 운영에 대한 선제적인 조치, 최근 개정된 법령과 시행된 정책, 경찰교통민원 사이트, 단속 사후 절차에 대한 더욱 활발한 홍보가 필요한 것으로 판단된다.

인공지능을 활용한 도주경로 예측 및 추적 시스템 (Escape Route Prediction and Tracking System using Artificial Intelligence)

  • 양범석;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.225-227
    • /
    • 2022
  • 현재 서울특별시는 25개 구청에 7만5천여대의 CCTV가 설치되어 있다. 서울특별시 구청별로, CCTV관제를 위한 관제센터를 구축하고 24시간 인공지능 지능형 영상분석을 통해 차량 종류, 번호판인식, 색상 분류 등의 정보를 빅데이터로 구축하고 있다. 서울특별시는 국토교통부, 경찰청, 소방청, 법무부, 군부대 등과 MOU를 체결하여 긴급/응급 상황에 신속한 대응이 가능하도록 하고 있다. 즉, 각 구청의 CCTV영상을 제공하여 안전하고 재난의 예방이 가능한 스마트시티를 구축하고 있다. 본 논문에서는 CCTV영상을 인공지능을 통해 사건발생 시 차량 및 인원에 대한 특징을 추출하고 이를 기반으로 도주경로를 예측하고 지속적인 추적이 가능하도록 설계한다. 해당 경로의 CCTV영상을 인공지능이 자동으로 선택하여 표출하도록 설계한다. 해당 관할 권역 이외 지역으로 사건 관련 사람이나 차량의 도주경로가 예상될 때 인접 구청에 영상정보와 추출된 정보를 제공함으로써 스마트시티 통합플랫폼을 확장할 수 있도록 설계한다. 본 논문은 스마트시티 통합플랫폼 연구발전에 기초자료로 기여할 것이다.

  • PDF

딥러닝 기반 지정차로제 단속 시스템 설계 (Design of a designated lane enforcement system based on deep learning)

  • 배가형;장종욱;장성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.236-238
    • /
    • 2022
  • 현 도로교통법상 도로 이용의 효율성과 교통안전 확보의 목적으로 차로 별 통행 가능 차종을 지정한 제도로써, 2020년 개정안이 현재 시행되고 있다. 독일과 국내의 자동차 1만 대당 교통사고 사망자 수를 비교하였을 때, 독일의 교통사고 사망자는 국내보다 현저히 낮은 수치를 기록하고 있다. 대표적으로 속도의 제한을 두지 않은 독일 아우토반의 사례는 한국의 속도위반법만이 사고율의 경감에 정답이 되지 않는다는 점을 시사한다. 아우토반 고속도로의 킵 라이트 원칙(keep right principle)에 따라 준수되는 지정차로제는 교통사고 감소에 큰 역할을 한다. 이러한 사실을 기반으로 지정차로제 위반 차량의 단속과 준수율 향상을 위한 교통 단속 시스템을 제안한다. 딥러닝 객체 인식 모델인 Yolo5를 이용하여 차종을 인식하고 OpenCV를 이용하여 차량 번호판과 차선을 인식 및 추출된 데이터를 서버에 저장하여 법규의 위반 여부를 판별하는 지정차로제 단속시스템을 개발한다. 이에 따라 운전자의 제도 인식 및 준수율의 향상을 통한 교통사고율의 감소 효과가 있을 것으로 기대된다.

  • PDF