• Title/Summary/Keyword: 버티포트

Search Result 20, Processing Time 0.017 seconds

Developing UAM Time Data Sharing System for Efficient Operation of Vertiport (버티포트 효율적 운용을 위한 UAM 시간정보 공유체계 개발방안)

  • Yeong-min Sim;Ye-seung Hwang;Jae-wook Chun;Min-jae Lee;Woo-choon Moon
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.408-419
    • /
    • 2024
  • Currently, the airport is expected to improve flight punctuality and operational efficiency after establishing A-CDM, which provides a foundation for mutual cooperation based on an information sharing system among stakeholders. An important element of the A-CDM is to share time information generated by each stakeholder from the arrival of an aircraft to ground operations and departure of the aircraft, thereby supporting timely arrival and departure of aircraft and improving the efficiency and punctuality of airport operations. In the UAM system, a vertiport that plays a role similar to an airport also needs to establish a system to share time information generated by each stakeholder for efficient operation of limited resources. In this regard, a method is needed to identify time information that needs to be shared by each stakeholder and apply technology to share it. In this paper, we propose an application method for system technology that classifies and mutually shares time information generated by stakeholders related to Vertiport operation according to data characteristics.

A Study on the Criteria for Applying the Obstacle Limitation Surface of the UAM Vertiport (UAM 수직이착륙장(Vertiport)의 장애물제한표면 적용 기준에 대한 연구)

  • TaeJung Yu
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2023
  • In recent years, UAM (Urban Air Mobility) has emerged as a solution to these urbanization problems, and many related reports and diverse prospects have been reported. UAM flights are planned to take off and land at a Vertiport located in the city center and fly along a pre-established corridor. In order for UAM to operate safely in the city center, it must ensure a safe flight path that avoids the buildings in the city center and many surrounding obstacles. Therefore, in this study, we compared and examined the installation standards of the obstacle limitation surface necessary for UAM to take off and land safely at the Vertiport. First, we analyzed the helicopter obstacle limitation surfaces in Japan and overseas, and the UAM Vertiport installation standards and obstacle limitation surface application standards recently announced at the FAA and EASA. It identified differences and similarities between heliport and Vertiport, and considered improvements to domestic helicopter obstacle limitation surfaces and criteria that could meet FAA and EASA standards.

Case Study Building a Vertiport for UAM Commercialization: Based on the Demonstration in Pontoise-Cormeiles, France (UAM 상용화를 위한 버티포트 구축 사례 연구: 프랑스 퐁투와즈 실증사례를 중심으로)

  • Joomin Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • Urban Air Mobility (UAM) is considered the future of transportation, offering solutions to urban challenges and reducing environmental issues through the use of electric power and leveraging the sky as a new transportation corridor. UAM has diverse applications, including passenger and goods transportation, emergency rescue operations, patient transfers, and urban tourism. Furthermore, it is poised to revolutionize the transportation landscape, impacting existing infrastructures such as roads and parking lots, along with autonomous vehicles. The UAM industry is anticipated to exert a significant impact on various sectors, including airframe manufacturing, the development of new materials (e.g., fuel cells and batteries), and even the defense industry, resulting in substantial economic benefits. Consequently, conducting proactive research and setting industry standards for UAM takeoff and landing infrastructure is crucial for securing market leadership. In this regard, the case of Pontoise-Cormeiles, France, stands out as it achieved the world's inaugural successful demonstration of a vertiport before the 2024 Olympics. This achievement has significant implications for our preparations for the commercialization of UAMs. Thus, a detailed review of the French vertiport construction case in this study will serve as a foundation for guiding the planning and operation of UAMs in South Korea, particularly in anticipation of upcoming demonstration tests.

A Study of the C-band Ground-based Radio Navigation System for UAM Cooperative Navigation (UAM 복합 항법을 위한 C 밴드 지상기반 전파 항법 시스템 연구)

  • Kyung-Soon Lee;Yong-Un Cho;Min-Jung Kim;Kyung Heon, Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.374-381
    • /
    • 2023
  • This study focuses on the implementation of C-band radio navigation in the 5.03 ~ 5.15 GHz terrestrial band to cooperate with GNSS navigation mainly used in existing UAMs. This is one of the navigation technologies that can fully satisfy the requirements of Title 14 of CFR-135.165. According to the FAA, the use of two or more independent navigation sources for aircraft is proposed for aircraft. This study proceeded with the link budget derivation through radio wave propagation path loss analysis, and antenna shape design for miniaturized Doppler VOR, and DME design with enhanced positional distance resolution compared to conventional aircraft. The ground navigation system which is the result of this study, consists of a VOR/DME ground station and a terminal that can be mounted on UAM. Significant performance was confirmed through the production and testing of each prototype.

A Study on the Establishment of Education and Training Program for Urban Air Mobility(UAM) Pilot in Korea (국내 도심항공모빌리티(UAM) 조종사 교육·훈련제도 수립 방안 연구)

  • Young-jin Cho;Chul Park;Se-Hoon Yim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.330-336
    • /
    • 2023
  • Rapid urbanization is rapidly progressing around the world, and urban problems such as traffic congestion, environmental pollution, and noise pollution are emerging, due to this urban concentration phenomenon, logistics and transportation costs are increasing. Urban Air Mobility(UAM) is a three-dimensional futuristic urban transportation that is expected to become an important transportation axis of smart cities as a service(MaaS) linked to roads, railways, and personal transportation. However, as of July 2023, research on airspace systems, Bertieport design, navigation, and communication for UAM operation is actively being conducted, but little research has been conducted on the concept of pilot education and training and education and training programs. Therefore, this paper aims to present a suitable plan for the domestic pilot training system through SWOT analysis of vertical takeoff and landing(VTOL) pilot education and training programs in the United States and Europe.

Analyzing Vertiport locations near Samsung Station for UAM activation : Focusing on the Metropolitan Area Demonstration Route (UAM 활성화를 위한 삼성역 부근의 버티포트 입지 분석 : 수도권 실증노선을 중심으로)

  • Jin Sick Kim;Byung Soo Gu;Moon Ju Nam;Kook Jin Jang;Hye Yeong Lee;Joo Yeoun Lee;Myoung Sug Chung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-78
    • /
    • 2023
  • This paper introduces urban air mobility (UAM) and the definition and types of vertiports required for UAM operations. It also examines domestic policy trends related to UAM and identifies UAM routes in Seoul currently planned by the government. To do so, we reviewed prior research on vertiports, analyzed new regulations from the European Aviation Safety Agency, and studied domestic vertiport specifications and deployment plans for UAM operations based on the size of the S-A1 airframe being developed by Hyundai, and applied them to Samsung Station, the core area of the demonstration routes. Next, using the 'Travel Time Savings Ratio', a method for evaluating transportation economics, we compared and analyzed the time taken by passenger vehicles and the time saved by using UAMs to derive a highly economical demonstration route. As a result, the Samsung Station↔Cheongnyangri Station section was found to be the most efficient. These findings are expected to be utilized for adjusting the distribution of UAMs when operating the demonstration route in the future.

Research on Urban Air Mobility Operations Optimization Research Trends (도심항공교통(Urban Air Mobility) 운영 최적화 연구 동향에 관한 연구)

  • Jibok Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.701-706
    • /
    • 2023
  • The Korean government and industry have presented a roadmap for the commercialization of UAM services and are promoting it in earnest. In order to introduce full-scale UAM services, there are various issues to be solved, such as the development of high-performance aircraft, the design of network bases and corridors, the optimization of operation management, and the establishment of related laws and systems. In this study, in terms of optimizing operation management, we will examine research trends by field, focusing on Korea, and derive research topics that need to be solved in the future. Korean researchers have suggested that research is centered on UAM service usage fees, usage intentions and acceptance models, and vertiport location selection, but operational optimization studies such as service order acceptance, aircraft repositioning, and battery charging and maintenance scheduling are needed in the future.

Development of Biosignal-based Urban Air Mobility Emergency Response System (생체신호 기반 도심 항공 모빌리티 비상 대응 시스템 개발)

  • Gihong Ku;Jeongouk Lee;Hanseong Lim;Sungwook Cho
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • This paper introduces an emergency response system in urban air mobility scenarios. A biometric responsive smartwatch was designed to monitor passengers' real-time heart rates. When an anomaly was detected, the system would send an alert via Morse code vibration and voice notification. It was integrated with the assumed control system of the ROS environment and communicates to implement a system for generating the shortest path for emergency landing to a nearby vertical port during urban air mobility operations. System stability was verified through high-fidelity simulation environments and testing based on actual geographic locations. Our technology improved the reliability and convenience of urban air mobility, demonstrating its effectiveness through simulations and tests in real-world scenarios.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Establishing Operational Management and Control Procedures for UAM Fleet Operators (UAM Fleet Operator 운항 관리 및 통제 절차개념 수립 연구)

  • Jeongmin Kim;Jaekyun Lee;Uwon Huh;Kyowon Song;Youngho Yoon;Yonghwan Cha
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.716-723
    • /
    • 2023
  • Global discussions are actively underway regarding the introduction of urban air mobility (UAM) to revolutionize the paradigm in the innovative mobility industry. While research related to airspace, vertiports, navigation, and communication pertinent to Korean UAM is actively pursued by relevant research institutions, there is a significant dearth in studies focusing on establishing concepts for operational management by UAM operators and formulating control procedures. The commercialization of UAM necessitates the establishment of standardized operational management concepts, pivotal as benchmarks for the individual system development among multiple UAM operators. This paper analyzes UAM exceptional law, operational readiness, existing regulations pertaining to commercial and rotary-wing aircraft, and proposes suitable approaches to formulate domestic low-density operational management and control procedures. By presenting strategies for conceptualizing operational management and control procedures in the initial low-density environment for UAM, this paper aspires to contribute to future trail operations and the wider adoption of UAM.