• Title/Summary/Keyword: 버스 엔진룸

Search Result 4, Processing Time 0.019 seconds

Reengineering of Bus Engine Room Structure for Preventing Thermal Damages (열해현상 방지를 위한 버스 엔진룸 구조개선)

  • 맹주성;윤준용;손한규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-55
    • /
    • 2000
  • Four types of different flow inlet models were tested to improve the flow uniformity at the inlet of the radiator and to prevent thermal damages of auxiliary units from the hot air in the bus engine room. Measurements and numerical calculations were performed and their results were in a good agreement with each other. Simultaneously temperature measurements were carried out under the conditions of actual bus driving. As designing the new flow inlet at the partition board which seperates the engine space and radiator space, flow circulation can be achieved and fresh air comes into the engine room from the bottom. It was proved that new inlet makes the one air temperature cooling down in the engine room, the other uniformity improvement.

  • PDF

Numerical Analysis of the Three Dimensional Flow in a Cavity of the Bus Engine Room (버스 엔진 룸 내 캐버터에서의 3차원 유동해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Kang, Seung-Kyu;Hwang, Yong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.82-90
    • /
    • 1999
  • Numerical analysis of the three dimensional flow in a bus engine room is carried out through this study. The radiator and the fan modeling rare carried out to simulate the flow in an engine room, and the results are focused on the flow in the cavity located in front of the radiator. The numerical simulation results are compared with the experiment . To improve the cooling performance in the bus engine room, the flow inside the cavity is inspected in detail. The complex flow features are found in this region , and the suggestion are made to improve the radiators cooling performance.

  • PDF

Design and Implementation of Distributed Control System based on Dual Field-bus for Ship Engine (이원화된 필드버스 기반의 선박 엔진용 분산 제어 시스템의 설계 및 구현)

  • Lee, Jae-Hyung;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • In this paper, we design and implement a DCS (Distributed Control System) based on dual field-bus for ship engine. For monitoring and controlling the condition of the ship engine, an implemented DCS is consisted of two-tier communication structure by using CAN (Controller Area Network) and MODBUS protocols. The first-tier is consisted of CAN protocol for sharing the condition of the ship engine by each implemented monitoring system. By using MODBUS protocol, the second-tier is used for communicating the monitoring data from an implemented DCS to AMS(Alarm Monitoring System). We verified and tested our scheme and implemented DCS by KR (Korea Register) technical rules through experimental tests.

A Study for Fire Examples Involved with Absorbing Material Breakaway and Electric Short in Engine Room of a Large Bus (대형 버스의 엔진룸에서 흡음재이탈 및 전기적인 단락에 관련된 화재 사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.9-14
    • /
    • 2020
  • This paper is a purpose to study the failure examples for a large bus vehicle fire. The first example, the researcher certified the fact that the absorbing material break away from the upper side of engine room because of weaken durability and the fire was produced in engine. The second example, it sought the fact that the fire breaks out by electric short because of over-load of compressor. The third example, it found the fact that the fire took place by heating of bellows upper part that was connected with muffler and exhaust manifold. The fourth example, it knew the fact that the fire occurred because of the electric short inside junction box of crash body part that was located to driver seat rightside. Therefore, the fire of a large bus occurring by decrepit of absorbing material and electric short have to thoroughgoingly manage the damage and dangerousness if it happens.